Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)

Total Submission(s): 379    Accepted Submission(s): 144

Problem Description

HDU’s n classrooms are on a line ,which can be considered as a number line. Each classroom has a coordinate. Now Little Q wants to build several candy shops in these n classrooms.

The total cost consists of two parts. Building a candy shop at classroom i would have some cost ci. For every classroom P without any candy shop, then the distance between P and the rightmost classroom with a candy shop on P's left side would be included in the cost too. Obviously, if there is a classroom without any candy shop, there must be a candy shop on its left side.

Now Little Q wants to know how to build the candy shops with the minimal cost. Please write a program to help him.

Input

The input contains several test cases, no more than 10 test cases.
In each test case, the first line contains an integer n(1≤n≤3000), denoting the number of the classrooms.
In the following n lines, each line contains two integers xi,ci(−109≤xi,ci≤109), denoting the coordinate of the i-th classroom and the cost of building a candy shop in it.
There are no two classrooms having same coordinate.

Output

For each test case, print a single line containing an integer, denoting the minimal cost.

Sample Input

3
1 2
2 3
3 4
4
1 7
3 1
5 10
6 1

Sample Output

5

11

// 一条直线上有 n 的教室,想要在这些点上建一些糖果店,建设糖果店的成本分为 2 部分,建设费,右边的非糖果店到这个糖果店的距离差的和(累加到是一个糖果店为止)

//典型DP题

dp[i] 为在 i 建造最后一个糖果店的最小花费的话

丛左到右 dp[i] = min(dp[i],dp[j]+shop[i].v-(n-i+1)*(shop[i].p-shop[j].p)) (1<=j<i) p是位置,v为建造费

还有就是需要排序,还有需要 long long 型

 #include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std;
#define LL long long
#define MX 3005
struct Shop
{
LL p,v;
bool operator < (const Shop& b)const
{
return p<b.p;
}
}shop[MX];
LL dp[MX]; int main()
{
int n;
while (scanf("%d",&n)!=EOF)
{
for (int i=;i<=n;i++)
scanf("%I64d%I64d",&shop[i].p,&shop[i].v);
sort(shop+,shop++n);
LL total = ;
for (int i=;i<=n;i++)
total += shop[i].p - shop[].p; dp[]=shop[].v+total;
for (int i=;i<=n;i++)
{
for (int j=;j<i;j++)
{
if (j==) dp[i] = dp[j] + shop[i].v - (n-i+)*(shop[i].p-shop[j].p);
else dp[i] = min(dp[i],dp[j]+shop[i].v-(n-i+)*(shop[i].p-shop[j].p));
}
}
LL ans = dp[];
for (int i=;i<=n;i++)
ans = min(dp[i],ans);
printf("%I64d\n",ans);
}
return ;
}

Building Shops的更多相关文章

  1. HDU6024 Building Shops 2017-05-07 18:33 30人阅读 评论(0) 收藏

    Building Shops                                                             Time Limit: 2000/1000 MS ...

  2. HDU6024:Building Shops(简单DP)

    Building Shops Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

  3. (hdu 6024) Building Shops

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6024 Problem Description HDU’s n classrooms are on a ...

  4. hdu6024 Building Shops(区间dp)

    https://cn.vjudge.net/problem/HDU-6024 分开考虑某一点种与不种,最后取二者的最小值. dp[i][1] = min(dp[i-1][0], dp[i-1][1]) ...

  5. HDU 6024 Building Shops

    $dp$. $dp[i]$表示到$i$位置,且$i$位置建立了的最小花费,那么$dp[i] = min(dp[k]+cost[i+1][k-1])$,$k$是上一个建的位置.最后枚举$dp[i]$,加 ...

  6. 【HDU6024】Building Shops

    题意 有n个教室排成一排,每个教室都有一个坐标,现在,小Q想建一些糖果商店,在这n个教室里面.总的花费有两部分,在教室i建一个糖果屋需要花费ci,对于没有任何糖果屋的P,需要的花费为这个教室到它左边有 ...

  7. HDU6024:Building Shops(DP)

    传送门 题意 在一条直线上有n个教室,现在要设置糖果店,使得最后成本最小,满足以下两个条件: 1.若该点为糖果店,费用为cost[i]; 2.若不是,则为loc[i]-最近的糖果店的loc 分析 dp ...

  8. HDU 6024 Building Shops (简单dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6024 题意:有n个room在一条直线上,需要这这些room里面建造商店,如果第i个room建造,则要总 ...

  9. 2017中国大学生程序设计竞赛 - 女生专场 1002 dp

    Building Shops Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

随机推荐

  1. centos7,py2和py3共存

    1.查看是否已经安装Python CentOS 7.2 默认安装了python2.7.5 因为一些命令要用它比如yum 它使用的是python2.7.5. 使用 python -V 命令查看一下是否安 ...

  2. eval(data)和eval("("+data+")")的区别

    如果data是字符串,使用eval("("+data+")")可以将其转换为json对象,和JSON.parse的功能一样.如果data是json对象,使用ev ...

  3. Python中函数参数传递问题【转】

    1. Python passes everything the same way, but calling it "by value" or "by reference& ...

  4. C++常考面试题汇总(持续更新中)

    c++面试题 一 用简洁的语言描述 c++ 在 c 语言的基础上开发的一种面向对象编程的语言: 应用广泛: 支持多种编程范式,面向对象编程,泛型编程,和过程化编程:广泛应用于系统开发,引擎开发:支持类 ...

  5. (二)Redis 笔记——发布&订阅、事务、数据库操作

    1. Redis 发布订阅 1.1 概述 Redis 发布订阅(pub/sub)是一种消息通信模式:发送者(pub)发送消息,订阅者(sub)接收消息. Redis 客户端可以订阅任意数量的频道. 下 ...

  6. NodeJS在CentOs7下安装

    node下载地址:https://nodejs.org/en/download/ 1.安装gcc $ yum install gcc-c++ 2.解压最新版本 $ mkdir /usr/local/n ...

  7. C# DateTime的11种构造函数

    别的也不多说没直接贴代码 using System; using System.Collections.Generic; using System.Globalization; using Syste ...

  8. TFTP 与 FTP的区别

    FTP(File Transfer Protocol,文件传输协议)协议在TCP/IP协议族中属于应用层协议,用于在远端服务器和本地客户端之间传输文件,使用TCP端口20和21进行传输.端口20用于传 ...

  9. nginx环境下启动php-fpm

    nginx环境下启动php-fpm 1.首先查看是否安装了php-fpm 这个我试了好多命令都不行比如 rpm -qa php-fpm , rpm -ql php-fpm , which php-fp ...

  10. 转:SQL2008 UNPIVOT 列转行示例

    CREATE TABLE pvt (VendorID int, Emp1 int, Emp2 int, Emp3 int, Emp4 int, Emp5 int); GO INSERT INTO pv ...