【题目大意】

给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对。

【思路】

太神了这道题……蒟蒻只能放放题解:,明早再过来看看还会不会推导过程……

实用的结论:

嗯……

/**************************************************************
Problem: 2820
Language: C++
Result: Accepted
Time:4164 ms
Memory:196600 kb
****************************************************************/ #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int INF=0x7fffffff;
const int MAXN=+;
typedef long long ll;
int miu[MAXN],g[MAXN],prime[MAXN],pnum=;
ll sum[MAXN];
int N,M; void get_miu(int maxn)
{
miu[]=;
g[]=;
sum[]=sum[]=;
for (int i=;i<maxn;i++) miu[i]=-INF;
for (int i=;i<maxn;i++)
{
if (miu[i]==-INF)
{
miu[i]=-;
prime[++pnum]=i;
g[i]=;
}
for (int j=;j<=pnum;j++)
{
if (i*prime[j]>=maxn) break;
if (i%prime[j]==)
{
miu[i*prime[j]]=;
g[i*prime[j]]=miu[i];
}
else
{
miu[i*prime[j]]=-miu[i];
g[i*prime[j]]=miu[i]-g[i];
}
}
sum[i]=sum[i-]+g[i];
}
} void get_ans()
{
ll ans=;
scanf("%d%d",&N,&M);
if (N>M) swap(N,M);
int pos;
for (int t=;t<=N;t=pos+)
{
pos=min(N/(N/t),M/(M/t));
ans+=(ll)(sum[pos]-sum[t-])*(N/t)*(M/t);
}
printf("%lld\n",ans);
} int main()
{
get_miu(MAXN);
int T;
scanf("%d",&T);
while (T--) get_ans();
return ;
}

【莫比乌斯反演】BZOJ2920-YY的GCD的更多相关文章

  1. P2257 YY的GCD(莫比乌斯反演)

    第一次做莫比乌斯反演,推式子真是快乐的很啊(棒读) 前置 若函数\(F(n)\)和\(f(d)\)存在以下关系 \[ F(n)=\sum_{n|d}f(d) \] 则可以推出 \[ f(n)=\sum ...

  2. UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)

    UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...

  3. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  4. 【BZOJ2820】YY的GCD(莫比乌斯反演)

    [BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...

  5. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  6. BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

    2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discu ...

  7. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  8. SPOJ PGCD 4491. Primes in GCD Table && BZOJ 2820 YY的GCD (莫比乌斯反演)

    4491. Primes in GCD Table Problem code: PGCD Johnny has created a table which encodes the results of ...

  9. P2257 YY的GCD (莫比乌斯反演)

    [题目链接] https://www.luogu.org/problemnew/show/P2257 // luogu-judger-enable-o2 /* -------------------- ...

随机推荐

  1. IDEA 用maven创建web项目编译时不能发布resources中的文件

    1.在pom.xml加入 <build> <resources> <resource> <directory>${basedir}/src/main/j ...

  2. react 记录:React Warning: Hash history cannot PUSH the same path; a new entry will not be added to the history stack

    前言: react-router-dom 4.4.2 在页面中直接使用 import { Link } from 'react-router-dom' //使用 <Link to={{ path ...

  3. CSS3学习笔记之loading动画

    效果截图: HTML代码: <div class="divBox"> <div class="loader"> <div clas ...

  4. [洛谷P2113] 看球泡妹子

    洛谷题目链接:看球泡妹子 题目背景 2014年巴西世界杯开幕了,现在满城皆是世界杯,商家们利用它大赚一笔,小明和小红也借此机会增进感情. 题目描述 本届世界杯共有N支球队,M场比赛.男球迷小明喜欢看比 ...

  5. [bzoj2599][IOI2011]Race——点分治

    Brief Description 给定一棵带权树,你需要找到一个点对,他们之间的距离为k,且路径中间的边的个数最少. Algorithm Analyse 我们考虑点分治. 对于子树,我们递归处理,所 ...

  6. Python 基础总结

    1.执行python脚本的两种方式: 答:1../run.py.shell直接调用python脚本 2.python run.py 调用python 解释器来调用python脚本 5.python单行 ...

  7. strace 命令是一种强大的工具,它能够显示所有由用户空间程序发出的系统调用。

    strace 命令是一种强大的工具,它能够显示所有由用户空间程序发出的系统调用. http://bbs.51cto.com/thread-1106891-1.html

  8. Backbone Model 源码简谈 (版本:1.1.0 基础部分完毕)

    Model工厂   作为model的主要函数,其实只有12行,特别的简练 var Model = Backbone.Model = function(attributes, options) { va ...

  9. springboot 全局异常处理

    springboot 全局异常处理 研究了半天springboot的全局异常处理,虽然还是需要再多整理一下,但是对于常见的404和500足以可以区分开,能够根据这两个异常分别处理 首先配置视图解析路径 ...

  10. 给tomcat单独配置jdk

    在catalina 文件 加这句话,前面加 export JAVA_HOME=/home/apache-tomcat-8.5.8/jdk1.8.0_101