【莫比乌斯反演】BZOJ2920-YY的GCD
【题目大意】
给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对。
【思路】
太神了这道题……蒟蒻只能放放题解:戳,明早再过来看看还会不会推导过程……
实用的结论:
嗯……
/**************************************************************
Problem: 2820
Language: C++
Result: Accepted
Time:4164 ms
Memory:196600 kb
****************************************************************/ #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int INF=0x7fffffff;
const int MAXN=+;
typedef long long ll;
int miu[MAXN],g[MAXN],prime[MAXN],pnum=;
ll sum[MAXN];
int N,M; void get_miu(int maxn)
{
miu[]=;
g[]=;
sum[]=sum[]=;
for (int i=;i<maxn;i++) miu[i]=-INF;
for (int i=;i<maxn;i++)
{
if (miu[i]==-INF)
{
miu[i]=-;
prime[++pnum]=i;
g[i]=;
}
for (int j=;j<=pnum;j++)
{
if (i*prime[j]>=maxn) break;
if (i%prime[j]==)
{
miu[i*prime[j]]=;
g[i*prime[j]]=miu[i];
}
else
{
miu[i*prime[j]]=-miu[i];
g[i*prime[j]]=miu[i]-g[i];
}
}
sum[i]=sum[i-]+g[i];
}
} void get_ans()
{
ll ans=;
scanf("%d%d",&N,&M);
if (N>M) swap(N,M);
int pos;
for (int t=;t<=N;t=pos+)
{
pos=min(N/(N/t),M/(M/t));
ans+=(ll)(sum[pos]-sum[t-])*(N/t)*(M/t);
}
printf("%lld\n",ans);
} int main()
{
get_miu(MAXN);
int T;
scanf("%d",&T);
while (T--) get_ans();
return ;
}
【莫比乌斯反演】BZOJ2920-YY的GCD的更多相关文章
- P2257 YY的GCD(莫比乌斯反演)
第一次做莫比乌斯反演,推式子真是快乐的很啊(棒读) 前置 若函数\(F(n)\)和\(f(d)\)存在以下关系 \[ F(n)=\sum_{n|d}f(d) \] 则可以推出 \[ f(n)=\sum ...
- UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)
UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- 【BZOJ2820】YY的GCD(莫比乌斯反演)
[BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- SPOJ PGCD 4491. Primes in GCD Table && BZOJ 2820 YY的GCD (莫比乌斯反演)
4491. Primes in GCD Table Problem code: PGCD Johnny has created a table which encodes the results of ...
- P2257 YY的GCD (莫比乌斯反演)
[题目链接] https://www.luogu.org/problemnew/show/P2257 // luogu-judger-enable-o2 /* -------------------- ...
随机推荐
- SCOI2010 传送带 [三分/模拟退火]
题目描述 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxh ...
- 1040: [ZJOI2008]骑士~基环外向树dp
Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里,在和平环境中 ...
- word使用宏 在文章中插入源代码进行排版
1.宏的代码如下. Sub 设置代码表格() ' author: code4101 ' 设置代码表格 宏 ' ' ' 背景色为morning的配色方案,RGB为(229,229,229) ) With ...
- [洛谷P1528] 切蛋糕
洛谷题目链接:切蛋糕 题目描述 Facer今天买了n块蛋糕,不料被信息组中球球等好吃懒做的家伙发现了,没办法,只好浪费一点来填他们的嘴巴.他答应给每个人留一口,然后量了量每个人口的大小.Facer有把 ...
- 【洛谷 P4555】 [国家集训队]最长双回文串 (Manacher)
题目链接 \(|S|<=10^5\),时间还是很宽松的. 允许我们使用线性/\(N\log N\)/甚至\(N \sqrt N\)的算法. 设\(l[i]\)表示以\(a[i]\)结尾的最长回文 ...
- hdu 2016 数据的交换输出
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2016 题目大意:把最小的和第一个交换并输出.注意格式哦! #include <stdio.h&g ...
- 嵌入式上 iscsi实现
前言 去年公司设备(haisi3516)上需要提供iscsi的功能,于是花了几天时间探究了下.linux内核(2.6.xx)支持iscsi,只是我发现当时我们设备的内核编译时没有选上,于是重新编译了内 ...
- Perl语言入门--3--文件读取与写入
现有文件test.txt,内容为:"123\n456" 1,打开文本test.txt #!/usr/bin/perl open d,"test.txt"; d ...
- 第三方库SDWebImage的原理
关于SDWebImage,其实是不用懂原理的,只是有一些面试官会问,分享给正在找工作的朋友们: 不多说直接上图: 另外..... 我的愿望是....... 世界和平.........
- 肢解 HTTP 服务器构建
更好阅读请戳 这里 1. 最简单的 http 服务器 // server.js var http = require("http"); http.createServer(func ...

