裸的最小路径覆盖。

把每个点拆点,变成二分图。

对于可以连边的点对(i,j):i->j'(1);

对于任意一点i,若i点为'.':S->i(1),i'->T(1);

答案为所有'.'的数量-最大流(最大匹配数)。

引用证明:

路径覆盖中的每条简单路径除了最后一个顶点之外都有唯一的后继和它对应;因此匹配边数就是非路径结尾的结点数;因此,匹配边数达到最大时,非路径结尾的结点数大道最大,故路径结尾的节点数目最少。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
#define INF 2147483647
#define MAXN 5011
#define MAXM 5000301
int v[MAXM],cap[MAXM],en,first[MAXN],next[MAXM];
int d[MAXN],cur[MAXN];
queue<int>q;
int n,m,S,T,N,M,R,C;
void Init_Dinic(){memset(first,-1,sizeof(first)); en=0; n=N*M; S=0; T=N*M+1;}
void AddEdge(const int &U,const int &V,const int &W)
{v[en]=V; cap[en]=W; next[en]=first[U]; first[U]=en++;
v[en]=U; next[en]=first[V]; first[V]=en++;}
bool bfs()
{
memset(d,-1,sizeof(d)); q.push(S); d[S]=0;
while(!q.empty())
{
int U=q.front(); q.pop();
for(int i=first[U];i!=-1;i=next[i])
if(d[v[i]]==-1 && cap[i])
{
d[v[i]]=d[U]+1;
q.push(v[i]);
}
}
return d[T]!=-1;
}
int dfs(int U,int a)
{
if(U==T || !a) return a;
int Flow=0,f;
for(int &i=cur[U];i!=-1;i=next[i])
if(d[U]+1==d[v[i]] && (f=dfs(v[i],min(a,cap[i]))))
{
cap[i]-=f; cap[i^1]+=f;
Flow+=f; a-=f; if(!a) break;
}
if(!Flow) d[U]=-1;
return Flow;
}
int max_flow()
{
int Flow=0,tmp=0;
while(bfs())
{
memcpy(cur,first,((n<<1)+5)*sizeof(int));
while(tmp=dfs(S,INF)) Flow+=tmp;
}
return Flow;
}
char map[52][52];
int num[52][52],sumv;
bool check(int x1,int y1,int x2,int y2)
{
if(x2<=N && x2>=1 && y2<=M && y2>=1 && map[x2][y2]=='.')
AddEdge(num[x1][y1],num[x2][y2]+n,1);
}
int main()
{
scanf("%d%d%d%d",&N,&M,&R,&C);
Init_Dinic();
for(int i=1;i<=N;++i) scanf("%s",map[i]+1);
for(int i=1;i<=N;++i)
for(int j=1;j<=M;++j)
num[i][j]=++en;
Init_Dinic();
for(int i=1;i<=N;++i)
for(int j=1;j<=M;++j)
if(map[i][j]=='.')
{
++sumv;
AddEdge(S,num[i][j],1);
AddEdge(num[i][j]+n,T,1);
check(i,j,i+R,j+C);
check(i,j,i+R,j-C);
if(R!=C)
{
check(i,j,i+C,j+R);
check(i,j,i+C,j-R);
}
}
printf("%d\n",sumv-max_flow());
return 0;
}

  

【最小路径覆盖】【二分图】【最大流】【Dinic】bzoj2150 部落战争的更多相关文章

  1. cogs_396_魔术球问题_(最小路径覆盖+二分图匹配,网络流24题#4)

    描述 http://cojs.tk/cogs/problem/problem.php?pid=396 连续从1开始编号的球,按照顺寻一个个放在n个柱子上,\(i\)放在\(j\)上面的必要条件是\(i ...

  2. LuoguP2764 最小路径覆盖问题(最大流)

    题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开 ...

  3. P2764 [网络流24题]最小路径覆盖问题[最大流]

    地址 这题有个转化,求最少的链覆盖→即求最少联通块. 设联通块个数$x$个,选的边数$y$,点数$n$个 那么有 $y=n-x$   即  $x=n-y$ 而n是不变的,目标就是在保证每个点入度.出度 ...

  4. POJ3020 Antenna Placement(二分图最小路径覆盖)

    The Global Aerial Research Centre has been allotted the task of building the fifth generation of mob ...

  5. [bzoj2150]部落战争_二分图最小路径覆盖

    部落战争 bzoj-2150 题目大意:题目链接. 注释:略. 想法: 显然是最小路径覆盖,我们知道:二分图最小路径覆盖等于节点总数-最大匹配. 所以我们用匈牙利或者dinic跑出最大匹配,然后用总结 ...

  6. 洛谷P2764 最小路径覆盖问题(最大流)

    传送门 先说做法:把原图拆成一个二分图,每一个点被拆成$A_i,B_i$,若原图中存在边$(u,v)$,则连边$(A_u,B_v)$,然后$S$对所有$A$连边,所有$B$对$T$连边,然后跑一个最大 ...

  7. Loj 6002 最小路径覆盖(最大流)

    题意: 求不相交的最小路径覆盖 思路: 连边跑二分图,匹配一条边相当于缩了一条边,答案为n-maxflow 如果是求可以相交的最小路径覆盖的话,先用Floyd跑出可达矩阵,然后所有可达的点连边跑二分图 ...

  8. 【wikioi】1904 最小路径覆盖问题(最大流+坑人的题+最小路径覆盖)

    http://wikioi.com/problem/1904/ 这题没看数据的话是一个大坑(我已报告官方修复了),答案只要求数量,不用打印路径...orz 最小路径覆盖=n-最大匹配,这个我在说二分图 ...

  9. BZOJ2150部落战争——最小路径覆盖

    题目描述 lanzerb的部落在A国的上部,他们不满天寒地冻的环境,于是准备向A国的下部征战来获得更大的领土. A国是一 个M*N的矩阵,其中某些地方是城镇,某些地方是高山深涧无人居住.lanzerb ...

随机推荐

  1. angular的一些问题

    引入第三方类库 1.安装依赖 npm install jquey --save 2.引入项目 在angular-cli.json "scripts": [ "../nod ...

  2. 更改win10和mint双系统默认启动顺序

    更改win7 & Linuxmint双系统安装后更改默认启动顺序 1.打开一个term,编辑/etc/default/grub,即sudo nano /etc/default/grub,把se ...

  3. Maven环境搭建、调试、打包

    1.配置Maven环境 将下载文件解压,然后设置maven环境 新建环境变量M2_HOME 变量名:M2_HOME 变量值:F:\maven\apache-maven-3.0.3 追加path环境变量 ...

  4. JRE集成到Tomcat

    将jdk集成到tomcat里面(不用客户安装JRE) 或者 tomcat使用指定的jdk_ 给客户安装软件的时候,也许客户不想你在人家机器的环境变量里设置来设置去,那么就要在tomcat里指定要使用的 ...

  5. [bzoj2631]tree——lct

    Brief Description 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: u v c:将u到v的路径上的点的权值都加上自然数c: u1 v1 u2 ...

  6. [bzoj2152]聪聪可可——点分治

    Brief Descirption 给定一棵带权树,您需要统计路径长度为3的倍数的路径长度 Algorithm Analyse 点分治. 考察经过重心的路径.统计出所有deep,统计即可. Code ...

  7. bzoj 2819 博弈论

    我们可以把 n为偶数的时候,n*n的棋盘看成若干个不相交的2*1的格子,那么对于每个2*1的格子,如果先手选了其中的一个,另一个人都可以选另一个,所以最后使先手没有可以选的格子,先手必败(这里的先手并 ...

  8. js 触发LinkButton点击事件,执行后台方法

    页面 <asp:LinkButton ID="lbtButton" runat="server"  CssClass="lbtButton&qu ...

  9. 使用System.getProperty("line.separator")时没有换行问题解决

    项目中要实现替换模版txt文本里面的内容,然后生成新的文档,其中先把模版文本的内容通过创建的 BufferedReader bufReader 使用 readLine() 来一行一行读取,所以在完成替 ...

  10. testng+IEDriverServer+yum+tomcat下载软件包

    testng框架链接:http://files.cnblogs.com/files/linxinmeng/testng%EF%BC%88selenium%E6%A1%86%E6%9E%B6%EF%BC ...