[POJ 1739] Tony's Tour
Link:
Solution:
这题除了一开始的预处理,基本上就是插头$dp$的模板题了
由于插头$dp$求的是$Hamilton$回路,而此题有起点和终点的限制
于是可以构造一条$[n,1]->[n+2,1]->[n+2,m]->[n,m]$的路径,正好只添加一条$S->T$的路径
接下来就是插头$dp$的模板了
推荐三篇文章,看完基本上就懂插头$dp$了吧,
litble:https://blog.csdn.net/litble/article/details/79369147
yhzq:远航之曲博客
陈丹琦论文:http://www.doc88.com/p-9009338580746.html
可以发现,插头$dp$其实就是对于当前已枚举部分和未枚举部分的轮廓线的状压$dp$
注意每枚举过一行要将所有状态左移一位(下一行会多出来一个状态位)
Code:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <utility>
#include <vector> using namespace std;
typedef long long ll; const int INF=0x3f3f3f3f,MAXN=,MAX_State=3e5+,MAX_Hash=3e5;
int n,m,pre,cur,dat[MAXN][MAXN];
int st[][MAX_State],st_cnt[],bit[];
ll res[][MAX_State],sum=; struct edge{int to,next;}e[MAX_State];
int hs[MAX_State],hs_cnt=;
void ins(int now,ll x)
{
int p=now%MAX_Hash;
for(int i=hs[p];i;i=e[i].next) //Hash时最好使用链式前向星
if(st[cur][e[i].to]==now){res[cur][e[i].to]+=x;return;}
st_cnt[cur]++; e[++hs_cnt].to=st_cnt[cur];
e[hs_cnt].next=hs[p];
hs[p]=hs_cnt; st[cur][st_cnt[cur]]=now;res[cur][st_cnt[cur]]=x;
} void plugDP()
{
sum=st[cur][]=cur=; //注意初始化的顺序
st_cnt[cur]=res[cur][]=; for(int i=;i<=n;i++)
{
for(int j=;j<=st_cnt[cur];j++) //左移一位
st[cur][j]<<=;
for(int j=;j<=m;j++)
{
hs_cnt=;memset(hs,,sizeof(hs));
pre=cur;cur^=;st_cnt[cur]=;
for(int k=;k<=st_cnt[pre];k++)
{
int now=st[pre][k];ll x=res[pre][k];
ll dw=(now>>bit[j-])&,rt=(now>>bit[j])&;
ll numd=<<bit[j-],numr=<<bit[j]; if(!dat[i][j] && !dw && !rt) ins(now,x);
else if(!dw && !rt && dat[i+][j] && dat[i][j+])
ins(now+numd+*numr,x);
else if(!dw && rt)
{
if(dat[i][j+]) ins(now,x);
if(dat[i+][j]) ins(now-rt*numr+rt*numd,x);
}
else if(dw && !rt)
{
if(dat[i+][j]) ins(now,x);
if(dat[i][j+]) ins(now-dw*numd+dw*numr,x);
}
else if(dw== && rt==)
{
int flag=;
for(int l=j+;l<=m;l++)
{
if(((now>>bit[l])&)==) flag++;
if(((now>>bit[l])&)==) flag--;
if(!flag){ins(now-numd-numr-(<<bit[l]),x);break;}
}
}
else if(dw== && rt==)
{
int flag=-;
for(int l=j-;l>=;l--)
{
if(((now>>bit[l])&)==) flag++;
if(((now>>bit[l])&)==) flag--;
if(!flag){ins(now-*numd-*numr+(<<bit[l]),x);break;}
}
}
else if(dw== && rt==) ins(now-*numd-numr,x);
else if(dw== && rt== && i==n && j==m) sum+=x;
}
}
}
} int main()
{
for (int i=;i<;i++)
bit[i]=i<<;
while(~scanf("%d%d",&n,&m) && n && m)
{
memset(dat,,sizeof(dat));
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
char ch=getchar();
while(ch!='.' && ch!='#') ch=getchar();
if(ch=='.') dat[i][j]=;
}
n+=;dat[n-][]=dat[n-][m]=; //预处理
for(int i=;i<=m;i++) dat[n][i]=; plugDP();printf("%lld\n",sum);
}
return ;
}
Review:
做的时候犯的丝帛错误:
1、对变量初始化的先后顺序要注意!!!
EX:$cur=0$要在$st[cur][1]$之前初始化
2、哈希表最好用链式前向星实现
用$vector$时TLE了,可能是$vector.clear()$的时间太长了?
链式前向星的一大优点就是重复使用时不用清空数组,只要$tot=0$即可
3、左移、右移比$==$优先级高,但位与、位或比$==$优先级低!!
[POJ 1739] Tony's Tour的更多相关文章
- POJ 1739 Tony's Tour(插头DP)
Description A square township has been divided up into n*m(n rows and m columns) square plots (1< ...
- POJ 1739 Tony's Tour (DP)
题意:从左下角到右下角有多少种走法. 析:特殊处理左下角和右下角即可. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000 ...
- POJ 1739 Tony's Tour (插头DP,轮廓线DP)
题意:给一个n*m的矩阵,其中#是障碍格子,其他则是必走的格子,问从左下角的格子走到右下角的格子有多少种方式. 思路: 注意有可能答案是0,就是障碍格子阻挡住了去路. 插头DP有两种比较常见的表示连通 ...
- 【POJ】1739 Tony's Tour
http://poj.org/problem?id=1739 题意:n×m的棋盘,'#'是障碍,'.'是空白,求左下角走到右下角且走过所有空白格子的方案数.(n,m<=8) #include & ...
- 【POJ】【1739】Tony's Tour
插头DP 楼教主男人八题之一! 要求从左下角走到右下角的哈密顿路径数量. 啊嘞,我只会求哈密顿回路啊……这可怎么搞…… 容易想到:要是把起点和重点直接连上就变成一条回路了……那么我们就连一下~ 我们可 ...
- POJ 1739:Tony's Tour
Description A square township has been divided up into n*m(n rows and m columns) square plots (1< ...
- 【poj1739】 Tony's Tour
http://poj.org/problem?id=1739 (题目链接) 题意 给出一个n*m的地图,有些是障碍.问从左下角走遍所有非障碍格子一次且仅一次最终到达右下角的路径方案数. Solutio ...
- POJ 1739
楼教主男人八题之一... 题目大意: 求从左下角经过所有非障碍点一次到达右下角的方案数 这里不是求回路,但是我们可以考虑,在最下面一行再增加一行,那么就可以当做求此时左下角到右下角的回路总数,那么就转 ...
- 插头DP专题
建议入门的人先看cd琦的<基于连通性状态压缩的动态规划问题>.事半功倍. 插头DP其实是比较久以前听说的一个东西,当初是水了几道水题,最近打算温习一下,顺便看下能否入门之类. 插头DP建议 ...
随机推荐
- missing blocks错误
Datanode的日志中看到: 10/12/14 20:10:31 INFO hdfs.DFSClient: Could not obtain block blk_XXXXXXXXXXXXXXXXXX ...
- 如何去掉Json字符串中反斜杠
做项目的时候,遇到了这样的问题,前台传来的Json字符串在实体类中不对应(无法转换为实体类),而且传来的数据项是跟着数据库中的表的变动而变动的(不能重写实体类). 前台Json字符串为: string ...
- 图论:2-SAT
先象征性地描述一下问题:一组(或者一个)东西有且仅有两种选择,要么选这个,要么选那个,还有一堆的约束条件 图论问题,当然是建边跑图喽 给出模型: 模型一:两者(A,B)不能同时取 那么选择了A就只能选 ...
- Python基础(4)_集合、布尔类型
一.集合 集合的作用一:关系运算集合的作用二:去重 定义集合:集合内的元素必须是唯一的:集合内的元素必须是可hash的,也是就不可变类型:集合是无序的 s={'egon',123,'egon','1' ...
- codechef T6 Pishty and tree dfs序+线段树
PSHTTR: Pishty 和城堡题目描述 Pishty 是生活在胡斯特市的一个小男孩.胡斯特是胡克兰境内的一个古城,以其中世纪风格 的古堡和非常聪明的熊闻名全国. 胡斯特的镇城之宝是就是这么一座古 ...
- [bzoj3231][SDOI2008]递归数列——矩阵乘法
题目大意: 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...
- Git服务器安装详解及安装遇到问题解决方案【转】
转自:http://www.cnblogs.com/grimm/p/5368777.html git是一个不错的版本管理的工具.现在自己在搞一个简单的应用程序开发,想使用git来进行管理.在Googl ...
- 网络知识===cookie 、session、JSESSIONID的区别
cookie .session ? 让我们用几个例子来描述一下cookie和session机制之间的区别与联系.笔者曾经常去的一家咖啡店有喝5杯咖啡免费赠一杯咖啡的优惠,然而一次性消费5杯咖啡的机会微 ...
- Python Requests 小技巧总结
关于 Python Requests ,在使用中,总结了一些小技巧把,分享下. 1:保持请求之间的Cookies,我们可以这样做. import requests self.session = req ...
- 【bzoj3089】gty的二逼妹子序列
一眼又是个莫队-- 首先看这时间/空间复杂度,线段树/主席树就别想了-- 然后么--zcy就有点傻了-- 于是zcy看了下hzwer,感觉受教育了. 分块的调块大小真是玄学设计. 有没有一种方法在修改 ...