题目大意

给定一个大小为n,每个数的大小均在[1,c]之间的数列,你需要回答m个询问,其中第i个询问形如\((l_i, r_i)\),你需要回答是否存在一个数使得它在区间\([l_i,r_i]\)中出现至少\(\frac{r-l+1}{2}\)次。

题解

第一次写主席树。

不难发现,对于一个询问,只有可能要么有解,要么有一个解。

考虑到每个数均在一个确定的区间内,我们考虑开一棵权值线段树(以前一直用这种方法,但不知到这就是权值线段树)来记录每一个数字的出现次数。

考虑到他要求询问一个区间,我们只要知道在后一个时间点树的情况和前一个时间点的树的情况就好了。但是,我们需要修改线段树,所以我们需要使用一个可持久化数据结构来实现这种修改与查询。

具体地,我们考虑对于每次修改建一棵新树来存储这个时间点的情况。显然这个时间点可以从上一个时间点推出来。

如果我们真的建一棵新树,显然会爆空间。我们考虑仅仅在修改过的节点新建节点,同时把边乱连合理地连接即可。

对于每一个询问,我们二分答案即可。

至于复杂度,时间复杂度的话就是\(\Theta(跑得过)\),但空间复杂度就是\(\Theta(不一定能跑过)\)辣(逃

不过在bzoj改数据以后还是能过的。

注意

二分答案的时候,注意返回0的情况。也就是说,充分考虑到每一种情况并为其设立出口。

代码(bzoj3524)

#include <cstdio>
int n, m, sz;
const int maxn = 500010;
const int maxm = 10000010;
int rt[maxn], lc[maxm], rc[maxm], sum[maxm];
void update(int l, int r, int x, int &y, int v) {
y = ++sz;
sum[y] = sum[x] + 1;
if (l == r)
return;
lc[y] = lc[x];
rc[y] = rc[x];
int mid = (l + r) >> 1;
if (v <= mid)
update(l, mid, lc[x], lc[y], v);
else
update(mid + 1, r, rc[x], rc[y], v);
}
int que(int L, int R) {
int l = 1, r = n, mid, x, y, tmp = (R - L + 1) >> 1;
x = rt[L - 1];
y = rt[R];
while (l != r) {
if (sum[y] - sum[x] <= tmp)
return 0;
mid = (l + r) >> 1;
if (sum[lc[y]] - sum[lc[x]] > tmp) {
r = mid;
x = lc[x];
y = lc[y];
} else if (sum[rc[y]] - sum[rc[x]] > tmp) {
l = mid + 1;
x = rc[x];
y = rc[y];
} else
return 0;
}
return l;
}
int main() {
#ifdef D
freopen("input", "r", stdin);
#endif
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; i++) {
int x;
scanf("%d", &x);
update(1, n, rt[i - 1], rt[i], x);
}
for (int i = 1; i <= m; i++) {
int l, r;
scanf("%d %d", &l, &r);
printf("%d\n", que(l, r));
}
}

代码(bzoj2223)

#include <cstdio>
int n, m, a, sz;
const int maxn = 500010;
const int maxm = 10000010;
int rt[maxn], lc[maxm], rc[maxm], sum[maxm];
void update(int l, int r, int x, int &y, int v) {
y = ++sz;
sum[y] = sum[x] + 1;
if (l == r)
return;
lc[y] = lc[x];
rc[y] = rc[x];
int mid = (l + r) >> 1;
if (v <= mid)
update(l, mid, lc[x], lc[y], v);
else
update(mid + 1, r, rc[x], rc[y], v);
}
int que(int L, int R) {
int l = 1, r = a, mid, x, y, tmp = (R - L + 1) >> 1;
x = rt[L - 1];
y = rt[R];
while (l != r) {
if (sum[y] - sum[x] <= tmp)
return 0;
mid = (l + r) >> 1;
if (sum[lc[y]] - sum[lc[x]] > tmp) {
r = mid;
x = lc[x];
y = lc[y];
} else if (sum[rc[y]] - sum[rc[x]] > tmp) {
l = mid + 1;
x = rc[x];
y = rc[y];
} else
return 0;
}
return l;
}
int main() {
#ifdef D
freopen("input", "r", stdin);
#endif
scanf("%d %d", &n, &a);
for (int i = 1; i <= n; i++) {
int x;
scanf("%d", &x);
update(1, a, rt[i - 1], rt[i], x);
}
scanf("%d", &m);
for (int i = 1; i <= m; i++) {
int l, r;
scanf("%d %d", &l, &r);
int ans = que(l, r);
if (ans > 0) {
printf("yes %d\n", ans);
} else
printf("no\n");
}
}

[bzoj3524==bzoj2223][Poi2014]Couriers/[Coci 2009]PATULJCI——主席树+权值线段树的更多相关文章

  1. 线段树(单标记+离散化+扫描线+双标记)+zkw线段树+权值线段树+主席树及一些例题

    “队列进出图上的方向 线段树区间修改求出总量 可持久留下的迹象 我们 俯身欣赏” ----<膜你抄>     线段树很早就会写了,但一直没有总结,所以偶尔重写又会懵逼,所以还是要总结一下. ...

  2. [bzoj3196][Tyvj1730]二逼平衡树_树套树_位置线段树套非旋转Treap/树状数组套主席树/权值线段树套位置线段树

    二逼平衡树 bzoj-3196 Tyvj-1730 题目大意:请写出一个维护序列的数据结构支持:查询给定权值排名:查询区间k小值:单点修改:查询区间内定值前驱:查询区间内定值后继. 注释:$1\le ...

  3. BZOJ2223[Coci 2009]PATULJCI——主席树

    题目描述 输入  先输入一个数n,然后一个数表示这n个数中最大的是多少,接下来一行n个数.然后一个数m,最后m行询问每次两个数l,r. 输出 no或者yes+这个数 样例输入 10 3 1 2 1 2 ...

  4. HDU - 2665 Kth number 主席树/可持久化权值线段树

    题意 给一个数列,一些询问,问$[l,r]$中第$K$大的元素是哪一个 题解: 写法很多,主席树是最常用的一种之一 除此之外有:划分树,莫队分块,平衡树等 主席树的定义其实挺模糊, 一般认为就是可持久 ...

  5. BZOJ2141排队——树状数组套权值线段树(带修改的主席树)

    题目描述 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家 乐和和.红星幼儿园的小朋友们排起了长长地队伍,准备吃果果.不过因为小朋友们的身高有所区别 ...

  6. HDU6621 K-th Closest Distance 第 k 小绝对值(主席树(统计范围的数有多少个)+ 二分 || 权值线段树+二分)

    题意:给一个数组,每次给 l ,r, p, k,问区间 [l, r] 的数与 p 作差的绝对值的第 k 小,这个绝对值是多少 分析:首先我们先分析单次查询怎么做: 题目给出的数据与多次查询已经在提示着 ...

  7. 莫队或权值线段树 或主席树 p4137

    题目描述 有一个长度为n的数组{a1,a2,…,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 输入格式 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问l,r. 输出格式 ...

  8. 权值线段树&&可持久化线段树&&主席树

    权值线段树 顾名思义,就是以权值为下标建立的线段树. 现在让我们来考虑考虑上面那句话的产生的三个小问题: 1. 如果说权值作为下标了,那这颗线段树里存什么呢? ----- 这颗线段树中, 记录每个值出 ...

  9. 主席树 【权值线段树】 && 例题K-th Number POJ - 2104

    一.主席树与权值线段树区别 主席树是由许多权值线段树构成,单独的权值线段树只能解决寻找整个区间第k大/小值问题(什么叫整个区间,比如你对区间[1,8]建立一颗对应权值线段树,那么你不能询问区间[2,5 ...

随机推荐

  1. js学习日记-常用正则符号参考

    预定义类 量词 贪婪.惰性.支配性量词 前瞻 边界 RegExp是全局对象,RegExp.$1...$9是全局属性.当执行任意正则表达式匹配操作时,JavaScript会自动更新全局对象RegExp上 ...

  2. SVN 使用时的小错误

    在使用SVN的时候总是出现一些小问题,今天又出现了一个,诶,分享一下吧!  Error:(个人文件夹名http://www.qdjhu.com/anli_xq/f_wancheng.php)  is ...

  3. spring 读取properties文件--通过注解方式

    问题: 需要通过properties读取页面的所需楼盘的名称.为了以后便于修改. 解决: 可以通过spring的 PropertiesFactoryBean 读取properties属性,就不需要自己 ...

  4. 每天一个Linux命令(13):apt命令

    apt-get和apt-cache命令是Debian Linux发行版中的APT软件包管理工具.所有基于Debian的发行都使用这个包管理系统.deb包可以把一个应用的文件包在一起,大体就如同Wind ...

  5. 自动化测试--封装JDBCUnit

    在进行测试的时候,经常需要对数据库进行操作.我们知道,通过代码与数据库交互,需要以下几步: 1.加载驱动 之前有盆友问我,为什么Selenium操作浏览器的时候,非要下载浏览器驱动?为啥对数据库进行操 ...

  6. hibernate延时加载机制

    延迟加载: 延迟加载机制是为了避免一些无谓的性能开销而提出来的,所谓延迟加载就是当在真正需要数据的时候,才真正执行数据加载操作.在Hibernate中提供了对实体对象的延迟加载以及对集合的延迟加载,另 ...

  7. 【iOS开发】iOS开发CGRectGetMidX. CGRectGetMidY.CGRectGetMinY. CGRectGetMaxY. CGRectGetMinX. CGRectGetMaxX的使用

    UILabel *label = [[UILabel alloc]initWithFrame:CGRectMake(10, 10, 110, 150)]; label.backgroundColor ...

  8. 【Linux】使用 PXE+Kickstart 无人值守批量安装系统

    一.PXE背景知识 通过 PXE+DHCP+TFTP+VSftpd+Kickstart 服务程序搭建出无人值守安装系统,从而批量部署客户机系统. PXE(Preboot eXecute Environ ...

  9. 正则表达式之旅_sed_awk

    谈谈正则表达式这个东西: 我想作为一个程序员,正则表达式大家绝对不陌生. 正则表达式好像一个有限则动机.主要作用是匹配,但是同时因为这个功能,我们可以扩展很多其他用法 像很多语言都引人了正则表达式:j ...

  10. 算法(11)Find All Duplicates in an Array

    题目:数组的长度是n,里面的数是1到n,其中肯定有重复的,找到里面重复的数字 思路:自己想愣是没有想出来,直接看答案,关键点是看nums[i]和nums[nums[i]-1]之间的关系,遍历整个数组, ...