【洛谷 P1251】 餐巾计划问题 (费用流)
题目链接
我做的网络流24题里的第一题。。
想是不可能想到的,只能看题解。
首先,我们拆点,将一天拆成晚上和早上,每天晚上会受到脏餐巾(来源:当天早上用完的餐巾,在这道题中可理解为从原点获得),每天早上又有干净的餐巾(来源:购买、快洗店、慢洗店)。
1.从原点向每一天晚上连一条流量为当天所用餐巾x,费用为0的边,表示每天晚上从起点获得x条脏餐巾。
2.从每一天早上向汇点连一条流量为当天所用餐巾x,费用为0的边,每天白天,表示向汇点提供x条干净的餐巾,流满时表示第i天的餐巾够用 。
3.从每一天晚上向第二天晚上连一条流量为INF,费用为0的边,表示每天晚上可以将脏餐巾留到第二天晚上(注意不是早上,因为脏餐巾在早上不可以使用)。
4.从每一天晚上向这一天+快洗所用天数t1的那一天早上连一条流量为INF,费用为快洗所用钱数的边,表示每天晚上可以送去快洗部,在地i+t1天早上收到餐巾 。
5.同理,从每一天晚上向这一天+慢洗所用天数t2的那一天早上连一条流量为INF,费用为慢洗所用钱数的边,表示每天晚上可以送去慢洗部,在地i+t2天早上收到餐巾 。
6.从起点向每一天早上连一条流量为INF,费用为购买餐巾所用钱数的边,表示每天早上可以购买餐巾 。 注意,以上6点需要建反向边!3~6点需要做判断(即连向的边必须<=n)
(懒得写了)(摘自洛谷题解)
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
#define INF 2147483647
typedef long long ll;
const int MAXN = 4010;
const int MAXM = 40010;
queue <int> q;
int s, t, now, n, m;
struct Edge{
int from, next, to, rest, cost;
}e[MAXM];
int head[MAXN], num = 1, vis[MAXN], Flow[MAXN], pre[MAXN];
ll dis[MAXN], mincost;
inline void Add(int from, int to, int flow, int cost){
e[++num] = (Edge){ from, head[from], to, flow, cost }; head[from] = num;
e[++num] = (Edge){ to, head[to], from, 0, -cost }; head[to] = num;
}
int RoadsExist(){
q.push(s);
memset(dis, 127, sizeof dis);
dis[s] = 0; Flow[s] = INF; pre[t] = 0;
while(!q.empty()){
now = q.front(); q.pop(); vis[now] = 0;
for(int i = head[now]; i; i = e[i].next)
if(e[i].rest && dis[e[i].to] > dis[now] + e[i].cost){
dis[e[i].to] = dis[now] + e[i].cost;
pre[e[i].to] = i;
Flow[e[i].to] = min(Flow[now], e[i].rest);
if(!vis[e[i].to]){
vis[e[i].to] = 1;
q.push(e[i].to);
}
}
}
return pre[t];
}
int a[MAXN], buy, qw, qc, sw, sc;
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
scanf("%d%d%d%d%d", &buy, &qw, &qc, &sw, &sc);
s = (n << 1) + 1; t = s + 1;
for(int i = 1; i <= n; ++i){
Add(s, i << 1, a[i], 0);
Add((i << 1) - 1, t, a[i], 0);
Add(s, (i << 1) - 1, INF, buy);
if(i != n) Add(i << 1, (i + 1) << 1, INF, 0);
if(i + qw <= n) Add(i << 1, ((i + qw) << 1) - 1, INF, qc);
if(i + sw <= n) Add(i << 1, ((i + sw) << 1) - 1, INF, sc);
}
while(RoadsExist()){
mincost += Flow[t] * dis[t];
for(int i = t; i != s; i = e[pre[i]].from){
e[pre[i]].rest -= Flow[t];
e[pre[i] ^ 1].rest += Flow[t];
}
}
printf("%lld\n", mincost);
return 0;
}
【洛谷 P1251】 餐巾计划问题 (费用流)的更多相关文章
- 洛谷.1251.餐巾计划问题(费用流SPFA)
题目链接 /* 每一天的餐巾需求相当于必须遍历某些点若干次 设q[i]为Dayi需求量 (x,y)表示边x容y费 将每个点i拆成i,i',由i'->T连(q[i],0)的边,表示求最大流的话一定 ...
- 洛谷 P1251 餐巾计划问题(线性规划网络优化)【费用流】
(题外话:心塞...大部分时间都在debug,拆点忘记加N,总边数算错,数据类型标错,字母写错......) 题目链接:https://www.luogu.org/problemnew/show/P1 ...
- 洛谷P1251 餐巾计划问题(最小费用最大流)
题意 一家餐厅,第$i$天需要$r_i$块餐巾,每天获取餐巾有三种途径 1.以$p$的费用买 2.以$f$的费用送到快洗部,并在$m$天后取出 3.以$s$的费用送到慢洗部,并在$n$天后取出 问满足 ...
- [洛谷P1251]餐巾计划问题
题目大意:一个餐厅N天,每天需要$r_i$块餐巾.每块餐巾需要p元,每天用过的餐巾变脏,不能直接用.现在有快洗店和慢洗店,快洗店洗餐巾需要m天,每块花费f元:慢洗店洗餐巾需要n天,每块餐巾s元(m & ...
- 洛谷 P1251 餐巾计划问题
题目链接 最小费用最大流. 每天拆成两个点,早上和晚上: 晚上可以获得\(r_i\)条脏毛巾,从源点连一条容量为\(r_i\),费用为0的边. 早上要供应\(r_i\)条毛巾,连向汇点一条容量为\(r ...
- 洛谷P1251 餐巾计划问题(费用流)
传送门 不得不说这题真是思路清奇,真是网络流的一道好题,完全没想到网络流的建图还可以这么建 我们把每一个点拆成两个点,分别表示白天和晚上,白天可以得到干净的餐巾(购买的,慢洗的,快洗的),晚上可以得到 ...
- 洛谷 P1251 餐巾计划问题【最小费用最大流】
建图细节比较多,对于每个点i,拆成i和i',i表示用的餐巾,i'表示脏餐巾,连接: (s,i,r[i],p)表示在这一天买新餐巾 (i,t,r[i],0)表示这一天用了r[i]的餐巾 (s,i+n,r ...
- P1251 餐巾计划问题 费用流
https://www.luogu.org/problemnew/show/P1251 题意 有一家酒店,酒店每天需要ri张桌布,桌布可以现买,p元.可以通过快洗店,等m天,f元.可以通过慢洗店,等n ...
- LuoguP1251 餐巾计划问题(费用流)
题目描述 一个餐厅在相继的 NN 天里,每天需用的餐巾数不尽相同.假设第 ii 天需要 r_iri块餐巾( i=1,2,...,N).餐厅可以购买新的餐巾,每块餐巾的费用为 pp 分;或者把旧餐巾送 ...
- 洛谷P1251 餐巾(网络流)
P1251 餐巾 15通过 95提交 题目提供者该用户不存在 标签网络流贪心 难度提高+/省选- 提交该题 讨论 题解 记录 最新讨论 为什么我全部10个测试点都对… 题目描述 一个餐厅在相继的N天里 ...
随机推荐
- 零基础学习Vim编辑器
**********************************************************************0.这篇教程的简介:Vim是Linux/Unix下的经典编辑 ...
- java集合浅谈(一)
一.类库结构图概览 容器对象仅能持有对象引用(对象的指针),而不是Copy对象信息,从网上搜得几张Java中集合类库的结构图,如下所示: 二.解说Collection 2.1 Collection ( ...
- SpriteKit游戏开发适配iPad/iPhone6/7/8/Plus及iPhoneX的尺寸及安全区域
未适配前:Ball球超过屏幕的上下方 适配后:Ball球就在屏幕的可视范围内运动了 一.那么如何适配不同的iPhone.iPhoneX及iPad的屏幕尺寸呢? 我们开发一个App的时候, 通常希望 ...
- 修改CodeSmith中的SchemaExplorer.MySQLSchemaProvider
修改C:\Program Files (x86)\CodeSmith\v6.5\Samples\Projects\CSharp\MySQLSchemaProvider\MySQLSchemaProvi ...
- esayui combotree 只能选择子节点
esayui combotree 只能选择子节点用onBeforeSelect:参数是node,节点被选中之前触发,返回false取消选择动作. 网上找了好多都没一个可用的,要想知道他是子节点还是根节 ...
- [Elasticsearch] 多字段搜索 (六) - 自定义_all字段,跨域查询及精确值字段
自定义_all字段 在元数据:_all字段中,我们解释了特殊的_all字段会将其它所有字段中的值作为一个大字符串进行索引.尽管将所有字段的值作为一个字段进行索引并不是非常灵活.如果有一个自定义的_al ...
- To Chromium之浏览器外框UI(2)
之前一些文章本来是草稿状态,一次性全release出来了,排版上可能看上去不太舒服,等哪一天研究下改改排版. Here继续chromium的UI,看看,浏览器的外壳是怎么被画出来的:) 可以先关注下几 ...
- [转]掌握 Dojo 工具包,第 2 部分: XHR 框架与 Dojo
作者:secooler 快乐的DBA Ajax 的兴起改变了传统的 B/S 结构应用程序中以页面为单位的交互模式,Ajax 引入的局部刷新机制带来了更好的用户体验,促使浏览器中的页面开始向应用程序发展 ...
- [CF1041E]Tree Reconstruction
题目大意:有一棵树,现在给你每条树边被去掉时,形成的两个联通块中点的最大的编号分别是多少,问满足条件的树存不存在,存在输出方案 题解:一条边的两个编号中较大的一个一定是$n$,否则无解. 开始构造这棵 ...
- Mybatis缓存机制及mybatis的各个组成部分
Mybatis 一级缓存: 基于PerpetualCache 的 HashMap本地缓存,其存储作用域为 Session,当 Session flush 或 close 之后,该Session中的所有 ...