SQLAlchemy技术文档(中文版)-上
转自:http://www.cnblogs.com/iwangzc/p/4112078.html
1.版本检查
import sqlalchemy
sqlalchemy.__version__
2.连接
from sqlalchemy import create_engine
engine = create_engine('sqlite:///:memory:',echo=True)
echo参数为True时,会显示每条执行的SQL语句,可以关闭。create_engine()返回一个Engine的实例,并且它表示通过数据库语法处理细节的核心接口,在这种情况下,数据库语法将会被解释称Python的类方法。
3.声明映像
当使用ORM【1】时,构造进程首先描述数据库的表,然后定义我们用来映射那些表的类。在现版本的SQLAlchemy中,这两个任务通常一起执行,通过使用Declarative方法,我们可以创建一些包含描述要被映射的实际数据库表的准则的映射类。
使用Declarative方法定义的映射类依据一个基类,这个基类是维系类和数据表关系的目录——我们所说的Declarative base class。在一个普通的模块入口中,应用通常只需要有一个base的实例。我们通过declarative_base()功能创建一个基类:
from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
有了这个base,我们可以依据这个base定义任意数量的映射类。一个简单的user例子:
from sqlalchemy import Column, Integer, String
class User(Base):
__tablename__= 'users'
id= Column(Integer, primary_key=True)
name = Column(String)
用Declarative构造的一个类至少需要一个__tablename__属性,一个主键行。
4.构造模式(项目中没用到)
5.创建映射类的实例
ed_user = User(name='ed',fullname='Ed Jones', password='edspassword')
6.创建会话
现在我们已经准备毫和数据库开始会话了。ORM通过Session与数据库建立连接的。当应用第一次载入时,我们定义一个Session类(声明create_engine()的同时),这个Session类为新的Session对象提供工厂服务。
from sqlalchemy.orm import sessionmaker
Session = sessionmaker(bind=engine)
这个定制的Session类会创建绑定到数据库的Session对象。如果需要和数据库建立连接,只需要实例化一个Session:
session = Session()
虽然上面的Session已经和数据库引擎Engine关联,但是还没有打开任何连接。当它第一次被使用时,就会从Engine维护的一个连接池中检索是否存在连接,如果存在便会保持连接知道我们提交所有更改并且/或者关闭session对象。
7.添加新对象(简略)
ed_user = User(name='ed', fullname='Ed Jones', password='edspassword')
session.add(ed_user)
至此,我们可以认为,新添加的这个对象实例仍在等待中;ed_user对象现在并不代表数据库中的一行数据。直到使用flush进程,Session才会让SQL保持连接。如果查询这条数据的话,所有等待信息会被第一时间刷新,查询结果也会立即发行。
session.commit()
通过commit()可以提交所有剩余的更改到数据库。
8.回滚
session.rollback()
9.查询
通过Session的query()方法创建一个查询对象。这个函数的参数数量是可变的,参数可以是任何类或者是类的描述的集合。下面是一个迭代输出User类的例子:
for instance in session.query(User).order_by(User.id):
print instance.name,instance.fullname
Query也支持ORM描述作为参数。任何时候,多个类的实体或者是基于列的实体表达都可以作为query()函数的参数,返回类型是元组:
for name, fullname in session.query(User.name,User.fullname): print name, fullname
Query返回的元组被命名为KeyedTuple类的实例元组。并且可以把它当成一个普通的Python数据类操作。元组的名字就相当于属性的属性名,类的类名一样。
for row in session.query(User, User.name).all(): print row.User,row.name
<User(name='ed',fullname='Ed Jones', password='f8s7ccs')>ed
label()不知道怎么解释,看下例子就明白了。相当于row.name
for row in session.query(User.name.label('name_label')).all():
print(row.name_label)
aliased()我的理解是类的别名,如果有多个实体都要查询一个类,可以用aliased()
from sqlalchemy.orm import aliased
user_alias = aliased(User, name='user_alias')
for row in session.query(user_alias,user_alias.name).all(): print row.user_alias
Query的 基本操作包括LIMIT和OFFSET,使用Python数组切片和ORDERBY结合可以让操作变得很方便。
for u in session.query(User).order_by(User.id)[1:3]:
#只查询第二条和第三条数据
9.1使用关键字变量过滤查询结果,filter 和 filter_by都适用。
【2】使用很简单,下面列出几个常用的操作:
query.filter(User.name == 'ed') #equals
query.filter(User.name != 'ed') #not equals
query.filter(User.name.like('%ed%')) #LIKE
uery.filter(User.name.in_(['ed','wendy', 'jack'])) #IN
query.filter(User.name.in_(session.query(User.name).filter(User.name.like('%ed%'))#IN
query.filter(~User.name.in_(['ed','wendy', 'jack']))#not IN
query.filter(User.name == None)#is None
query.filter(User.name != None)#not None
from sqlalchemy import and_
query.filter(and_(User.name =='ed',User.fullname =='Ed Jones')) # and
query.filter(User.name == 'ed',User.fullname =='Ed Jones') # and
query.filter(User.name == 'ed').filter(User.fullname == 'Ed Jones')# and
from sqlalchemy import or_
query.filter(or_(User.name =='ed', User.name =='wendy')) #or
query.filter(User.name.match('wendy')) #match
9.2.返回列表和数量(标量?)
all()返回一个列表:可以进行Python列表的操作。
query = session.query(User).filter(User.name.like('%ed')).order_by(User.id)
query.all()
[<User(name='ed',fullname='EdJones', password='f8s7ccs')>,<User(name='fred',
fullname='FredFlinstone', password='blah')>]
first()适用于限制一个情况,返回查询到的第一个结果作为标量?:好像只能作为属性,类
query.first() <User(name='ed',fullname='Ed Jones', password='f8s7ccs')>
one()完全获取所有行,并且如果查询到的不只有一个对象或是有复合行,就会抛出异常。
from sqlalchemy.orm.exc import MultipleResultsFound
user = query.one()
try: user = query.one()
except
MultipleResultsFound, e:
print e
Multiple rows were found for one()
如果一行也没有:
from sqlalchemy.orm.exc import NoResultFound
try: user = query.filter(User.id == 99).one()
except
NoResultFound, e:
print e
No row was found for one()
one()方法对于想要解决“no items found”和“multiple items found”是不同的系统是极好的。(这句有语病啊)例如web服务返回,本来是在no results found情况下返回”404“的,结果在多个results found情况下也会跑出一个应用异常。
scalar()作为one()方法的依据,并且在one()成功基础上返回行的第一列。
query = session.query(User.id).filter(User.name == 'ed')
query.scalar()
9.3.使用字符串SQL
字符串能使Query更加灵活,通过text()构造指定字符串的使用,这种方法可以用在很多方法中,像filter()和order_by()。
from sqlalchemy import text
for user in session.query(User).filter(text("id<224")).order_by(text("id")).all()
绑定参数可以指定字符串,用params()方法指定数值。
session.query(User).filter(text("id<:value and name=:name")).\
params(value=224, name='fred').order_by(User.id).one()
如果要用一个完整的SQL语句,可以使用from_statement()。
session.query(User).from_statement(text("SELECT* FROM users where name=:name")).\
params(name='ed').all()
也可以用from_statement()获取完整的”raw”,用字符名确定希望被查询的特定列:
session.query("id","name", "thenumber12").\
from_statement(text("SELECT id, name, 12 as ""thenumber12 FROM users where name=:name")).\
params(name='ed').all()
[(1,u'ed', 12)]
感觉这个不太符合ORM的思想啊。。。
9.4 计数
count()用来统计查询结果的数量。
session.query(User).filter(User.name.like('%ed')).count()
func.count()方法比count()更高级一点【3】
from sqlalchemy import func
session.query(func.count(User.name),User.name).group_by(User.name).all() [(1,u'ed'), (1,u'fred'), (1,u'mary'), (1,u'wendy')]
为了实现简单计数SELECT count(*) FROM table,可以这么写:
session.query(func.count('*')).select_from(User).scalar()
如果我们明确表达计数是根据User表的主键的话,可以省略select_from(User):
session.query(func.count(User.id)).scalar()
上面两行结果均为4。
SQLAlchemy技术文档(中文版)-上的更多相关文章
- SQLAlchemy技术文档(中文版)(全)
原文链接:http://www.cnblogs.com/iwangzc/p/4112078.html(感谢作者的分享) sqlalchemy 官方文档:http://docs.sqlalchemy.o ...
- 【SQLAlchemy】SQLAlchemy技术文档(中文版)(中)
10.建立联系(外键) 是时候考虑怎样映射和查询一个和Users表关联的第二张表了.假设我们系统的用户可以存储任意数量的email地址.我们需要定义一个新表Address与User相关联. from ...
- SQLAlchemy技术文档(中文版)(中)
10.建立联系(外键) 是时候考虑怎样映射和查询一个和Users表关联的第二张表了.假设我们系统的用户可以存储任意数量的email地址.我们需要定义一个新表Address与User相关联. from ...
- 常用控件产品官方文档/手册/API列表 c#控件文档API列表 asp.net控件产品技术文档中文版
.netCHARTING报表图表控件 文档帮助手册Ab3d.PowerToys 文档帮助手册Ab3d.Reader3ds 文档帮助手册ABViewer 文档帮助手册 (工程图纸文档管理系统)Activ ...
- SQLAlchemy技术文档(中文版)(上)
在学习SQLAlchemy的过程中,好多时候需要查官方Tutorial,发现网上并没有完整的中文版,于是利用这两天空余时间粗略翻译了一下. 翻译效果很差....但也算是强迫自己通读一遍Tutorial ...
- 【SQLAlchemy】SQLAlchemy技术文档(中文版)(上)
1.版本检查 import sqlalchemy sqlalchemy.__version__ 2.连接 from sqlalchemy import create_engine engine = c ...
- SQLAlchemy技术文档(中文版)-下
10.建立联系(外键) 是时候考虑怎样映射和查询一个和Users表关联的第二张表了.假设我们系统的用户可以存储任意数量的email地址.我们需要定义一个新表Address与User相关联. from ...
- Atitit usrQBK1600 技术文档的规范标准化解决方案
Atitit usrQBK1600 技术文档的规范标准化解决方案 1.1. Keyword关键词..展关键词,横向拓展比较,纵向抽象细化拓展知识点1 1.2. 标题必须有高大上词汇,参考文章排行榜,1 ...
- Kafka 技术文档
Kafka 技术文档 目录 1 Kafka创建背景 2 Kafka简介 3 Kafka好处 3.1 解耦 3.2 冗余 3.3 扩展性 3.4 灵活性 & 峰值处理能力 3.5 可恢复性 ...
随机推荐
- 解决hadoop no dataNode to stop问题
错误原因: datanode的clusterID 和 namenode的 clusterID 不匹配. 解决办法: 1. 打开 hadoop/tmp/dfs/namenode/name/dir 配置对 ...
- HDU 1398 Square Coins 整数拆分变形 母函数
欢迎参加——BestCoder周年纪念赛(高质量题目+多重奖励) Square Coins Time Limit: 2000/1000 MS (Java/Others) Memory Limit ...
- Spring框架(依赖注入)
特点 1轻量级和侵入性低 2依赖注入和面向接口实现松耦合 3面向切面编程 减少样式代码 专有名词: 1依赖注入:对象无需自行管理依赖关系.通过系统负责协调在创建对象的第三方组件的设定,实现依赖关系自动 ...
- grpc deadlines
最近在将应用的rpc更换为grpc,使用过程中,发现报“rpc error:code=DeadlineExceeded desc = context deadline exceeded”,这是啥?原来 ...
- 算法(5)Jump Game
题目:非负数的数组,每个数组元素代表这你能最大跨越多少步,初始在0的位置,问,能不能正好调到数组的最后一位! https://leetcode.com/problems/jump-game/#/des ...
- ArcGis下的叠加分析
1矢量与矢量叠加的话就用ToolBox里有Overlay: 2如果是矢量和栅格叠加的话用Spatial analysis模块中的 zonal statistics: 3还有就是栅格与栅格的叠加S ...
- 附录A培训实习生-面向对象基础构造方法和带参数的构造方法(2)
构造方法,又叫构造函数,其实就是对类进行实例化.构造方法与类同名,无返回值,也不需要void,在new时候调用.也就是说,就是调用构造方法的时候. 所有类都有构造方法,如果你不编码则系统默认生成空的的 ...
- BZOJ1037 ZJOI2008生日聚会(动态规划)
设f[i][j][x][y]为安排了i个男孩j个女孩,后缀最大男孩-女孩数为x,最大女孩-男孩数为y的方案数.转移显然. #include<iostream> #include<cs ...
- 洛谷 P3084 [USACO13OPEN]照片Photo 解题报告
[USACO13OPEN]照片Photo 题目描述 农夫约翰决定给站在一条线上的\(N(1 \le N \le 200,000)\)头奶牛制作一张全家福照片,\(N\)头奶牛编号\(1\)到\(N\) ...
- [BZOJ3829][Poi2014]FarmCraft 贪心
这个题应该是很容易想到贪心的,只要可是怎么贪才是科学的呢?我们分析一下题干,对于每个边只能一进一出因此,对于树上的一棵子树,我们只要一进子树就必须遍历完,因此我们只能进行一遍 dfs() 然后我们发现 ...