Python 进阶 之 yield
.转载自:https://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/
Python yield 使用浅析:
您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ?
我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。
如何生成斐波那契數列
斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:
清单 1. 简单输出斐波那契數列前 N 个数
1
2
3
4
5
6
|
def fab(max): n, a, b = 0, 0, 1 while n < max: print b a, b = b, a + b n = n + 1 |
执行 fab(5),我们可以得到如下输出:
1
2
3
4
5
6
|
>>> fab(5) 1 1 2 3 5 |
结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。
要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:
清单 2. 输出斐波那契數列前 N 个数第二版
1
2
3
4
5
6
7
8
|
def fab(max): n, a, b = 0, 0, 1 L = [] while n < max: L.append(b) a, b = b, a + b n = n + 1 return L |
可以使用如下方式打印出 fab 函数返回的 List:
1
2
3
4
5
6
7
8
|
>>> for n in fab(5): ... print n ... 1 1 2 3 5 |
改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List
来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:
清单 3. 通过 iterable 对象来迭代
1
|
for i in range(1000): pass |
会导致生成一个 1000 个元素的 List,而代码:
1
|
for i in xrange(1000): pass |
则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。
利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:
清单 4. 第三个版本
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
class Fab(object): def __init__(self, max): self.max = max self.n, self.a, self.b = 0, 0, 1 def __iter__(self): return self def next(self): if self.n < self.max: r = self.b self.a, self.b = self.b, self.a + self.b self.n = self.n + 1 return r raise StopIteration() |
Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:
1
2
3
4
5
6
7
8
|
>>> for n in Fab(5): ... print n ... 1 1 2 3 5 |
然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:
清单 5. 使用 yield 的第四版
1
2
3
4
5
6
7
8
9
|
def fab(max): n, a, b = 0, 0, 1 while n < max: yield b # print b a, b = b, a + b n = n + 1 ''' |
第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。
调用第四版的 fab 和第二版的 fab 完全一致:
1
2
3
4
5
6
7
8
|
>>> for n in fab(5): ... print n ... 1 1 2 3 5 |
简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。
也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:
清单 6. 执行流程
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
>>> f = fab(5) >>> f.next() 1 >>> f.next() 1 >>> f.next() 2 >>> f.next() 3 >>> f.next() 5 >>> f.next() Traceback (most recent call last): File "< stdin >", line 1, in < module > StopIteration |
当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。
我们可以得出以下结论:
一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。
yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。
如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:
清单 7. 使用 isgeneratorfunction 判断
1
2
3
|
>>> from inspect import isgeneratorfunction >>> isgeneratorfunction(fab) True |
要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:
清单 8. 类的定义和类的实例
1
2
3
4
5
|
>>> import types >>> isinstance(fab, types.GeneratorType) False >>> isinstance(fab(5), types.GeneratorType) True |
fab 是无法迭代的,而 fab(5) 是可迭代的:
1
2
3
4
5
|
>>> from collections import Iterable >>> isinstance(fab, Iterable) False >>> isinstance(fab(5), Iterable) True |
每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
>>> f1 = fab(3) >>> f2 = fab(5) >>> print 'f1:', f1.next() f1: 1 >>> print 'f2:', f2.next() f2: 1 >>> print 'f1:', f1.next() f1: 1 >>> print 'f2:', f2.next() f2: 1 >>> print 'f1:', f1.next() f1: 2 >>> print 'f2:', f2.next() f2: 2 >>> print 'f2:', f2.next() f2: 3 >>> print 'f2:', f2.next() f2: 5 |
return 的作用
在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。
另一个例子
另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:
清单 9. 另一个 yield 的例子
1
2
3
4
5
6
7
8
9
|
def read_file(fpath): BLOCK_SIZE = 1024 with open(fpath, 'rb') as f: while True: block = f.read(BLOCK_SIZE) if block: yield block else: return |
以上仅仅简单介绍了 yield 的基本概念和用法,yield 在 Python 3 中还有更强大的用法,我们会在后续文章中讨论。
注:本文的代码均在 Python 2.7 中调试通过
Python 进阶 之 yield的更多相关文章
- Python进阶----异步同步,阻塞非阻塞,线程池(进程池)的异步+回调机制实行并发, 线程队列(Queue, LifoQueue,PriorityQueue), 事件Event,线程的三个状态(就绪,挂起,运行) ,***协程概念,yield模拟并发(有缺陷),Greenlet模块(手动切换),Gevent(协程并发)
Python进阶----异步同步,阻塞非阻塞,线程池(进程池)的异步+回调机制实行并发, 线程队列(Queue, LifoQueue,PriorityQueue), 事件Event,线程的三个状态(就 ...
- Python进阶:全面解读高级特性之切片!
导读:切片系列文章连续写了三篇,本文是对它们做的汇总.为什么要把序列文章合并呢?在此说明一下,本文绝不是简单地将它们做了合并,主要是修正了一些严重的错误(如自定义序列切片的部分),还对行文结构与章节衔 ...
- Python进阶:迭代器与迭代器切片
2018-12-31 更新声明:切片系列文章本是分三篇写成,现已合并成一篇.合并后,修正了一些严重的错误(如自定义序列切片的部分),还对行文结构与章节衔接做了大量改动.原系列的单篇就不删除了,毕竟也是 ...
- python进阶篇
python进阶篇 import 导入模块 sys.path:获取指定模块搜索路径的字符串集合,可以将写好的模块放在得到的某个路径下,就可以在程序中import时正确找到. import sys ...
- [Book Content]Python进阶
python进阶 原书内容https://github.com/eastlakeside/interpy-zh 通过记录书本目录和大概内容做一个记录,方便以后回顾检索. Chapter Title B ...
- Python进阶----反射(四个方法),函数vs方法(模块types 与 instance()方法校验 ),双下方法的研究
Python进阶----反射(四个方法),函数vs方法(模块types 与 instance()方法校验 ),双下方法的研究 一丶反射 什么是反射: 反射的概念是由Smith在1982年首次提出的 ...
- Python 进阶_生成器 & 生成器表达式
目录 目录 相关知识点 生成器 生成器 fab 的执行过程 生成器和迭代器的区别 生成器的优势 加强的生成器特性 生成器表达式 生成器表达式样例 小结 相关知识点 Python 进阶_迭代器 & ...
- python进阶强化学习
最近学习了慕课的python进阶强化训练,将学习的内容记录到这里,同时也增加了很多相关知识. 主要分为以下九个模块: 基本使用 迭代器和生成器 字符串 文件IO操作 自定义类和类的继承 函数装饰器和类 ...
- 关于Python中的yield
关于Python中的yield 在介绍yield前有必要先说明下Python中的迭代器(iterator)和生成器(constructor). 一.迭代器(iterator) 在Python中,f ...
随机推荐
- SQL select 和SQL where语句
一.SQL SELECT语句 用于从表中选取数据,结果被存储在一共结果表中(称为结果集) 1.语法: SELECT 列名称 FROM 表名称 以及: SELECT * FROM 表名称 注:SQ ...
- Delphi函数详解:全局函数,内部函数,类的成员函数,类的静态方法
1. Delphi中的全局函数 //要点: 需要给其他单元调用, 必须在 interface 声明, 但必须在 uses 区后面 unit Unit1; interface uses Window ...
- ActiveMQ入门代码
Hello world程序演示: 生产者: package com.mq.helloworld; import javax.jms.Connection; import javax.jms.Conne ...
- SMT(SF)
示例一: uint iPwmDuty; double temp; temp = (double)AdConvert(AN_TEMPERATURE); temp = temp/; iPwmDuty = ...
- C#范型实例化对象
T s = System.Activator.CreateInstance<T>();
- 纯css实现 switch开关
<!-- 直接看代码,利用了css3兄弟选择器 --><!-- html --> <button class="switch"> <inp ...
- 如何用setInterval调用类的方法
setInterval() 方法可按照指定的周期(以毫秒计)来调用函数或计算表达式.setInterval() 方法会不停地调用函数,直到 clearInterval() 被调用或窗口被关闭.由 se ...
- HDU3829:Cat VS Dog(最大独立集)
Cat VS Dog Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others)Total ...
- B. Light It Up 思维题
Recently, you bought a brand new smart lamp with programming features. At first, you set up a schedu ...
- Exponial~(欧拉函数)~(发呆题)
Description Everybody loves big numbers (if you do not, you might want to stop reading at this point ...