Prime Number CodeForces - 359C (属于是数论)
Simon has a prime number x and an array of non-negative integers a1, a2, ..., an.
Simon loves fractions very much. Today he wrote out number on
a piece of paper. After Simon led all fractions to a common denominator and summed them up, he got a fraction: ,
where number t equals xa1 + a2 + ... + an.
Now Simon wants to reduce the resulting fraction.
Help him, find the greatest common divisor of numbers s and t. As GCD can be rather large, print it as a remainder after dividing it by number 1000000007 (109 + 7).
The first line contains two positive integers n and x (1 ≤ n ≤ 105, 2 ≤ x ≤ 109)
— the size of the array and the prime number.
The second line contains n space-separated integers a1, a2, ..., an (0 ≤ a1 ≤ a2 ≤ ... ≤ an ≤ 109).
Print a single number — the answer to the problem modulo 1000000007 (109 + 7).
2 2
2 2
8
3 3
1 2 3
27
2 2
29 29
73741817
4 5
0 0 0 0
1
In the first sample . Thus, the answer to the problem is 8.
In the second sample, . The answer to the problem is 27,
as351 = 13·27, 729 = 27·27.
In the third sample the answer to the problem is 1073741824 mod 1000000007 = 73741817.
In the fourth sample . Thus, the answer to the problem is 1.
#include<queue>
#include<stack>
#include<vector>
#include<math.h>
#include<stdio.h>
#include<numeric>//STL数值算法头文件
#include<stdlib.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<functional>//模板类头文件
using namespace std; const long long INF=1e9+7;
const long long maxn=101000; long long n,x;
long long a[maxn]; long long quick_mod(long long a,long long b)
{
long long ans=1;
a=a%INF;
while(b)
{
if(b&1)
ans=ans*a%INF;
a=a*a%INF;
b>>=1;
}
return ans;
} int main()
{
while(~scanf("%d %d",&n,&x))
{
long long sum1=0;
for(long long i=0; i<n; i++)
{
scanf("%d",&a[i]);
sum1+=a[i];
}
for(long long i=0; i<n; i++)
a[i]=sum1-a[i];
sort(a,a+n);
long long ans,j=1,cot=1,t;
for(j=1; j<=n; j++)
{
if(a[j]!=a[j-1])
{
if(cot%x)
{
ans=a[j-1];
break;
}
else
{
cot/=x;
a[j-1]+=1;
j--;
}
}
else cot++;
}
printf("%d\n",quick_mod(x,min(ans,sum1)));
}
return 0;
} #include<queue>
#include<stack>
#include<vector>
#include<math.h>
#include<stdio.h>
#include<numeric>//STL数值算法头文件
#include<stdlib.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<functional>//模板类头文件
using namespace std; const long long INF=1e9+7;
const long long maxn=101000; long long n,x;
long long a[maxn]; long long gcd(long long a,long long b)
{
long long ans=1;
ans=ans%INF;
while(b)
{
if(b&1)
ans=ans*a%INF;
a=a*a%INF;
b>>=1;
}
return ans;
} int main()
{
while(~scanf("%I64d %I64d",&n,&x))
{
long long sum1=0;
for(long long i=0; i<n; i++)
{
scanf("%I64d",&a[i]);
sum1+=a[i];
}
for(long long i=0; i<n; i++)
a[i]=sum1-a[i];
sort(a,a+n);
long long ans,j=1,cot=1,t;
while(j<=n)
{
if(a[j]!=a[j-1])
{
if(cot%x)
{
ans=a[j-1];
break;
}
long long f=a[j-1]+1;
t=cot/x;
for(long long k=j-1,s=t; s>0; s--,k--)
a[k]=f;
j-=t;
j++;
cot=1;
}
else cot++,j++;
}
printf("%I64d\n",gcd(x,min(ans,sum1)));
}
return 0;
}
Prime Number CodeForces - 359C (属于是数论)的更多相关文章
- CodeForce 359C Prime Number
Prime Number CodeForces - 359C Simon has a prime number x and an array of non-negative integers a1, ...
- Relatively Prime Powers CodeForces - 1036F (莫比乌斯函数容斥)
Relatively Prime Powers CodeForces - 1036F Consider some positive integer xx. Its prime factorizatio ...
- FZU 1649 Prime number or not米勒拉宾大素数判定方法。
C - Prime number or not Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%I64d & % ...
- 每日一九度之 题目1040:Prime Number
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6732 解决:2738 题目描述: Output the k-th prime number. 输入: k≤10000 输出: The k- ...
- LintCode-Kth Prime Number.
Design an algorithm to find the kth number such that the only prime factors are 3, 5, and 7. The eli ...
- 10 001st prime number
这真是一个耗CPU的运算,怪不得现在因式分解和素数查找现在都用于加密运算. By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13 ...
- [LeetCode] Prime Number of Set Bits in Binary Representation 二进制表示中的非零位个数为质数
Given two integers L and R, find the count of numbers in the range [L, R] (inclusive) having a prime ...
- [Swift]LeetCode762. 二进制表示中质数个计算置位 | Prime Number of Set Bits in Binary Representation
Given two integers L and R, find the count of numbers in the range [L, R] (inclusive) having a prime ...
- 10_ for 练习 _ is Prime Number ?
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...
随机推荐
- JAVA多线程提高九:Semaphere同步工具
java 中Semaphere可类比操作系统信号量,硬件资源如IO.内存.磁盘等都是有固定量的,多个程序需要竞争这些资源,没有资源就需要被挂起. 一.类和方法摘要 构造函数: public Semap ...
- 51nod1471 小S的兴趣
题目来源: CodeForces 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 320 小S喜欢有趣的事.但是,每个人的兴趣都是独特的.小S热衷于自问自答.有一天,小S想出了一个问题 ...
- echarts初探:了解模块化
什么是echarts?这是官网:http://echarts.baidu.com/ 简单的说就是百度提供的一些画图表的库,用它你可以简便的画出一些你想要的图表效果. 虽然蛮好用的,但对于不知道模块化的 ...
- 天梯赛 L2-012 关于堆的判断 (二叉树)
将一系列给定数字顺序插入一个初始为空的小顶堆H[].随后判断一系列相关命题是否为真.命题分下列几种: "x is the root":x是根结点: "x and y ar ...
- python3学习笔记.1.初体验
最近工作烦得很 就想找点儿别的事情来做,于是想到了学学python. 因为是vs2017,所以就在里面安装了. 第一个程序肯定是Hello World了. 新建一个python应用程序 代码只有一行 ...
- Vuex-Action
Action 类似于 mutation,不同在于: Action 提交的是 mutation,而不是直接变更状态. Action 可以包含任意异步操作. 让我们来注册一个简单的 action: con ...
- Linux内核中实现生产者与消费者(避免无效唤醒)【转】
转自:http://blog.csdn.net/crazycoder8848/article/details/42581399 本文关注的重点是,避免内核线程的无效唤醒,并且主要是关注消费者线程的设计 ...
- [ python ] 练习作业 - 2
1.写函数,检查获取传入列表或元组对象的所有奇数位索引对应的元素,并将其作为新列表返回给调用者. lic = [0, 1, 2, 3, 4, 5] def func(l): return l[1::2 ...
- PlantUML——1.Hello
官网: http://www.plantuml.com/ 第一步: 下载 plantuml.jar文件: 第二步:创建一个demo.txt文件(与plantuml.jar在同一目录),内容如下: @s ...
- LightOJ 1319 Monkey Tradition(中国剩余定理)
题目链接:https://vjudge.net/contest/28079#problem/U 题目大意:给你n(n<12)行,每行有pi,ri,求一个数ans满足ans%pi=ri(i从1~n ...