HDU 1695 容斥
又是求gcd=k的题,稍微有点不同的是,(i,j)有偏序关系,直接分块好像会出现问题,还好数据规模很小,直接暴力求就行了。
/** @Date : 2017-09-15 18:21:35
* @FileName: HDU 1695 容斥 或 莫比乌斯反演.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; LL pri[N];
LL mu[N];
LL sum[N];
int c = 0;
bool vis[N]; void prime()
{
MMF(vis);
MMF(sum);
mu[1] = 1;
for(int i = 2; i < N; i++)
{
if(!vis[i])
pri[c++] = i, mu[i] = -1;
for(int j = 0; j < c && i * pri[j] < N; j++)
{
vis[i * pri[j]] = 1;
if(i % pri[j] == 0)
{
mu[i * pri[j]] = 0;
break;
}
else mu[i * pri[j]] = -mu[i];
}
}
sum[0] = 0;
for(int i = 1; i < N; i++)
sum[i] += sum[i - 1] + mu[i];
} LL get_sum(LL n, LL m)
{
if(n > m) swap(n, m);
int mi = min(n, m);
LL ans = 0;
for(int i = 1, last; i <= mi; i++, last = last + 1)
{
last = min(n/(n/i), m/(m/i));//由于有重复情况 不能直接分块?
ans += (LL)(n / i) * (m / i) * (sum[i] - sum[i - 1]);
}
return ans;
} int main()
{
int T;
prime();
cin >> T;
int cnt = 0;
while(T--)
{
LL a, b, c, d, k;
scanf("%lld%lld%lld%lld%lld", &a, &b, &c, &d, &k);
if(k == 0)
{
printf("Case %d: 0\n", ++cnt);
continue;
}
a = (a - 1) / k;
b = b / k;
c = (c - 1) / k;
d = d / k;
LL ans = get_sum(a, c) + get_sum(b, d) - get_sum(a, d) - get_sum(b, c) - get_sum(min(b,d), min(b,d)) / 2;
printf("Case %d: %lld\n", ++cnt, ans);
/*LL ans = 0;
LL t = 0;
for(int i = 1; i <= b; i++)
ans += (b / i) * (d / i) * mu[i];
for(int i = 1; i <= d; i++)
t += (min(b,d)/ i) * (min(b, d) / i) * mu[i];
printf("Case %d: %lld\n", ++cnt, ans - t / 2);*/
}
return 0;
}
HDU 1695 容斥的更多相关文章
- HDU 4135 容斥
问a,b区间内与n互质个数,a,b<=1e15,n<=1e9 n才1e9考虑分解对因子的组合进行容斥,因为19个最小的不同素数乘积即已大于LL了,枚举状态复杂度不会很高.然后差分就好了. ...
- HDU 2841 容斥 或 反演
$n,m <= 1e5$ ,$i<=n$,$j<=m$,求$(i⊥j)$对数 /** @Date : 2017-09-26 23:01:05 * @FileName: HDU 284 ...
- HDU 4059 容斥初步练习
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> ...
- hdu 1220 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=1220 Cube Time Limit: 2000/1000 MS (Java/Others) Memory ...
- Co-prime HDU - 4135_容斥计数
Code: #include<cstdio> #include<cstring> #include<cmath> #include<iostream> ...
- How many integers can you find HDU - 1796_容斥计数
Code: #include<cstdio> using namespace std; typedef long long ll; const int R=13; ll a[R]; ll ...
- HDU 1695 GCD 容斥
GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k ...
- hdu 1695 GCD 欧拉函数 + 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K] 和 [L ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
随机推荐
- 王者荣耀交流协会-小组互评Alpha版本
小组分工如下: 1.探路者---贪吃蛇(测评人:王玉玲) 链接:http://www.cnblogs.com/WYLFZ/p/7805520.html http://www.cnblogs.co ...
- MySQL数据库错误号:2003 - Can't connect to MYSQL server on 'localhost'(10061)
打开Windows+R在里面输入services.msc打开服务 在MySQL服务是右键点击启动,让其状态显为正在运行即可 启动完毕,然后再用命令CMD去连接,或者Navicat都不再报上面的错
- sql nolock是什么
百度:SQL Server 中的 NOLOCK 到底是什么意思? 文章地址:http://blog.sina.com.cn/s/blog_7d3b18a50100rfwg.html 查询语句加上 no ...
- Lucene 分词
在Lucene中很多数据是通过Attribute进行存储的 步骤是同过TokenStrem获取文本信息流 TokenStream stream = a.tokenStream("conten ...
- SQL 语句(增删改查)
一.增:有4种方法1.使用insert插入单行数据: --语法:insert [into] <表名> [列名] values <列值> 例:insert into Strden ...
- int 和Integer
Java是一个近乎纯洁的面向对象编程语言,但是为了编程的方便还是引入不是对象的基本数据类型,但是为了能够将这些基本数据类型当成对象操作,Java为每一个基本数据类型都引入了对应的包装类型(wrappe ...
- MAVEN pom.xml 解读
POM全称是Project Object Model,即项目对象模型.pom.xml是maven的项目描述文件,它类似与antx的project.xml文件.pom.xml文件以xml的 形式描述项 ...
- BZOJ1564 NOI2009二叉查找树(区间dp)
首先按数据值排序,那么连续一段区间的dfs序一定也是连续的. 将权值离散化,设f[i][j][k]为i到j区间内所有点的权值都>=k的最小代价,转移时枚举根考虑是否修改权值即可. #includ ...
- 【题解】APIO2014回文串
哇哦~想不到我有生之年竟然能够做出字符串的题目ヾ(✿゚▽゚)ノ虽然这题比较裸但依然灰常开心! 首先有一个棒棒的性质:本质不同的回文串最多有 O(n) 个.首先 manacher 把它们都找出来,然后问 ...
- 【BZOJ4709】柠檬(动态规划,单调栈)
[BZOJ4709]柠檬(动态规划,单调栈) 题面 BZOJ 题解 从左取和从右取没有区别,本质上就是要分段. 设\(f[i]\)表示前\(i\)个位置的最大值. 那么相当于我们枚举一个前面的位置\( ...