HDU 1695 容斥
又是求gcd=k的题,稍微有点不同的是,(i,j)有偏序关系,直接分块好像会出现问题,还好数据规模很小,直接暴力求就行了。
/** @Date : 2017-09-15 18:21:35
* @FileName: HDU 1695 容斥 或 莫比乌斯反演.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; LL pri[N];
LL mu[N];
LL sum[N];
int c = 0;
bool vis[N]; void prime()
{
MMF(vis);
MMF(sum);
mu[1] = 1;
for(int i = 2; i < N; i++)
{
if(!vis[i])
pri[c++] = i, mu[i] = -1;
for(int j = 0; j < c && i * pri[j] < N; j++)
{
vis[i * pri[j]] = 1;
if(i % pri[j] == 0)
{
mu[i * pri[j]] = 0;
break;
}
else mu[i * pri[j]] = -mu[i];
}
}
sum[0] = 0;
for(int i = 1; i < N; i++)
sum[i] += sum[i - 1] + mu[i];
} LL get_sum(LL n, LL m)
{
if(n > m) swap(n, m);
int mi = min(n, m);
LL ans = 0;
for(int i = 1, last; i <= mi; i++, last = last + 1)
{
last = min(n/(n/i), m/(m/i));//由于有重复情况 不能直接分块?
ans += (LL)(n / i) * (m / i) * (sum[i] - sum[i - 1]);
}
return ans;
} int main()
{
int T;
prime();
cin >> T;
int cnt = 0;
while(T--)
{
LL a, b, c, d, k;
scanf("%lld%lld%lld%lld%lld", &a, &b, &c, &d, &k);
if(k == 0)
{
printf("Case %d: 0\n", ++cnt);
continue;
}
a = (a - 1) / k;
b = b / k;
c = (c - 1) / k;
d = d / k;
LL ans = get_sum(a, c) + get_sum(b, d) - get_sum(a, d) - get_sum(b, c) - get_sum(min(b,d), min(b,d)) / 2;
printf("Case %d: %lld\n", ++cnt, ans);
/*LL ans = 0;
LL t = 0;
for(int i = 1; i <= b; i++)
ans += (b / i) * (d / i) * mu[i];
for(int i = 1; i <= d; i++)
t += (min(b,d)/ i) * (min(b, d) / i) * mu[i];
printf("Case %d: %lld\n", ++cnt, ans - t / 2);*/
}
return 0;
}
HDU 1695 容斥的更多相关文章
- HDU 4135 容斥
问a,b区间内与n互质个数,a,b<=1e15,n<=1e9 n才1e9考虑分解对因子的组合进行容斥,因为19个最小的不同素数乘积即已大于LL了,枚举状态复杂度不会很高.然后差分就好了. ...
- HDU 2841 容斥 或 反演
$n,m <= 1e5$ ,$i<=n$,$j<=m$,求$(i⊥j)$对数 /** @Date : 2017-09-26 23:01:05 * @FileName: HDU 284 ...
- HDU 4059 容斥初步练习
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> ...
- hdu 1220 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=1220 Cube Time Limit: 2000/1000 MS (Java/Others) Memory ...
- Co-prime HDU - 4135_容斥计数
Code: #include<cstdio> #include<cstring> #include<cmath> #include<iostream> ...
- How many integers can you find HDU - 1796_容斥计数
Code: #include<cstdio> using namespace std; typedef long long ll; const int R=13; ll a[R]; ll ...
- HDU 1695 GCD 容斥
GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k ...
- hdu 1695 GCD 欧拉函数 + 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K] 和 [L ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
随机推荐
- Java:类集框架中集合的学习
Java:类集框架中集合的学习 集合 Java:Set的学习 Set是类集框架中的集合类.集合是不按特定的方式排序,并且没有重复对象的一种类. Q:Set如何操作?Set中的不按特定方式排序是怎么排序 ...
- flask验证登录学习过程(1)---准备
对应flask的接口开发,目前自己可以熟练的进行.但是深入到更基础的,从注册到验证登录的过程一直不是特别清楚. 趁着年度不是特别忙的时候,特意去学习加强一下.把这个过程记录在此处. 首先是规划一个项目 ...
- 2016-2017 ACM-ICPC, NEERC, Northern Subregional Contest Problem F. Format
题目来源:http://codeforces.com/group/aUVPeyEnI2/contest/229510 时间限制:1s 空间限制:512MB 题目大意: 给定一个字符串,使用%[...] ...
- 【BioCode】根据seq与位点信息截取窗口
代码说明 sequence24371.txt 以上为所有氨基酸的编号,序列,与位点标记.根据标记为“1”的位点,截取窗口:如下(实验结果): 图示为一个窗口为12的蛋白质片段 2N+1=25: 实现代 ...
- 【week12】psp
psp 项目 内容 开始时间 结束时间 被打断 净时间 12月2日 写博客 对各小组评价 11:20 12:05 0 45 写博客 final评价1 23:40 23:57 0 17 12月5日 看论 ...
- php过滤字符串
addslashes(); stripslashes(); //对数据库教程操作时,转义特殊字符 定义:addslashes() 函数在指定的预定义字符前添加反斜杠. 语法:addslashes(st ...
- Linux的cut命令
cut是一个选取命令,就是将一段数据经过分析,取出我们想要的.一般来说,选取信息通常是针对“行”来进行分析的,并不是整篇信息分析的. (1)其语法格式为:cut [-bn] [file] 或 cut ...
- CODE FESTIVAL 2016 qualA Grid and Integers
划年代久远的水 题意 有一个R*C的棋盘,要求在每个格子上填一个非负数,使得对任意一个2*2的正方形区域,左上角和右下角的数字之和等于左下角和右上角的数字之和.有一些格子已经被填上了数字,问现在能否满 ...
- BZOJ4919 大根堆(动态规划+treap+启发式合并)
一个显然的dp是设f[i][j]为i子树内权值<=j时的答案,则f[i][j]=Σf[son][j],f[i][a[i]]++,f[i][a[i]+1~n]对其取max.这样是可以线段树合并的, ...
- VSS2005设置不输入密码直接登录VSS
1.登录管理员 2.Tools-->Options-->General -->Use network name for automatic user log in 去掉勾选不自动登 ...