LINK

题意:简单粗暴,求菲波那契数列每个数的m次的前n项和模1e9+7

思路:斐波那契通项式, 注意到有很多根号5,求二次剩余为5模1e9+7的解,显然我们可以直接找一个(383008016),然后拿来替代根号5,然后优化下,把中括号中共轭的两部分预处理下,然后由于是外部的一个指数m,从1枚举到m,来求二项式定理的每项系数,再用个逆元就好了。人家的校赛题(

/** @Date    : 2017-03-18-15.39
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version :
*/
#include<bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8;
const LL mod = 1e9 + 9;
const LL trem = 383008016;
LL fac[N], le[N], ri[N]; LL fpow(LL a, LL n)
{
LL res = 1;
while(n > 0)
{
if(n & 1)
res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
} LL Inv(LL x)
{
return fpow(x, mod - 2);
} void init()
{
LL tinv = Inv(2); fac[0] = 1;
le[0] = ri[0] = 1;
LL l = ((1 + trem + mod)%mod) * tinv % mod;
LL r = ((1 - trem + mod)%mod) * tinv % mod;
for(LL i = 1; i < N; i++)
fac[i] = fac[i - 1] * i % mod;
for(int i = 1; i < N; i++)
{
le[i] = le[i - 1] * l % mod;
ri[i] = ri[i - 1] * r % mod;
//cout << le[i] <<" " << ri[i] << endl;
}
}
int T;
LL n, k;
int main()
{
init();
cin >> T;
while(T--)
{
scanf("%lld%lld", &n, &k);
LL ans = 0;
for(int i = 0; i <= k; i++)
{
LL flag = 1;
if((k - i) % 2)
flag = -1;
LL t = le[i] * ri[k - i] % mod;
LL d = fac[k - i] * fac[i] % mod;
LL c = fac[k] * Inv(d) % mod;
LL x = (t * (1 - fpow(t, n)) % mod) * Inv(1 - t) % mod;
if(t == 1)
x = n % mod;
ans = (ans + flag * c * x ) % mod;
ans = (ans + mod) % mod;
//cout << t << endl;
}
ans = (ans * fpow(Inv(trem) % mod, k) + mod) % mod;
printf("%lld\n", ans);
}
return 0;
}

ZOJ 3774 二次剩余的更多相关文章

  1. [zoj 3774]Power of Fibonacci 数论(二次剩余 拓展欧几里得 等比数列求和)

    Power of Fibonacci Time Limit: 5 Seconds      Memory Limit: 65536 KB In mathematics, Fibonacci numbe ...

  2. ZOJ 3774 Fibonacci的K次方和

    In mathematics, Fibonacci numbers or Fibonacci series or Fibonacci sequence are the numbers of the f ...

  3. Fibonacci数列的幂和 zoj 3774

    题目大意: 求斐波那契数列前n项的k次幂和  Mod 1000000009.    n<=1e18, k<=1e5 这题的k比较大,所以不能用矩阵乘法来递推.学到了新姿势...  http ...

  4. [hdu 4959]Poor Akagi 数论(卢卡斯数,二次域运算,等比数列求和)

    Poor Akagi Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tot ...

  5. 2014 Super Training #7 F Power of Fibonacci --数学+逆元+快速幂

    原题:ZOJ 3774  http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3774 --------------------- ...

  6. ZOJ People Counting

    第十三届浙江省大学生程序设计竞赛 I 题, 一道模拟题. ZOJ  3944http://www.icpc.moe/onlinejudge/showProblem.do?problemCode=394 ...

  7. ZOJ 3686 A Simple Tree Problem

    A Simple Tree Problem Time Limit: 3 Seconds      Memory Limit: 65536 KB Given a rooted tree, each no ...

  8. ZOJ Problem Set - 1394 Polar Explorer

    这道题目还是简单的,但是自己WA了好几次,总结下: 1.对输入的总结,加上上次ZOJ Problem Set - 1334 Basically Speaking ac代码及总结这道题目的总结 题目要求 ...

  9. ZOJ Problem Set - 1392 The Hardest Problem Ever

    放了一个长长的暑假,可能是这辈子最后一个这么长的暑假了吧,呵呵...今天来实验室了,先找了zoj上面简单的题目练练手直接贴代码了,不解释,就是一道简单的密文转换问题: #include <std ...

随机推荐

  1. 感谢——Thunder团队

    团队软件的开发,已经进入第二个阶段——Beta版本了.回头看看,我们走过了很长的一段路,也经历了很多,有意见不一的争吵.有取得暂时成功时的欢欣鼓舞,我们就像一家人,就像那首歌中唱到的,“我们是一家人, ...

  2. 每日Scrum--No.2

    Yesterday:找地图 Today: 找到最适合我们软件的地图版本 Problem:找不到特别匹配的版本

  3. 《我是一只IT小小鸟》 读书笔记

    <我是一只IT小小鸟>讲述了IT人员的成长经历,邀请了许多名IT行业的职员,学生,研究生写了自己的亲身经历和人生感悟,以书中可以看到我国IT行业的快速进步,以及看到IT员在这条道路上的坎坷 ...

  4. 课堂学习Scrum站立会议

    项目名称:连连看游戏 小组成员:张政,张金生,李权,武志远 Master:张政 站立会议内容 1.已完成的内容 windows下的基本用户页面,实现了多个BUTTON下7*12的页面布局,但是出现了b ...

  5. LR监控tomcat服务器

    采用编写VuGen脚本访问Tomcat的Status页面的方式获取性能数据(利用了关联和lr_user_data_point函数),本质上还是使用tomcat自带的监控页面,只是将监控结果加到LR的a ...

  6. python/django将mysql查询结果转换为字典组

    使用python查询mysql数据库的时候,默认查询结果没有返回表字段名称,不方便使用.为了方便使用一般会选择将查询结果加上字段名称以字典组的方式返回查询结果. 实现如下: def dict_fetc ...

  7. Eclipse 保存代码时,不自动换行设置

    Eclipse在保存代码时,总是自动换行.尤其是注释,换行后的注释读起来就很混乱.后来发现是在保存文件时设置了自动格式化代码的原因. 关闭自动格式代码设置: windows-->Preferen ...

  8. javascript如何封装函数

    通常写js组件开发的,都会用到匿名函数的写法去封装一个对象,与外界形成一个闭包的作用域.封装,全天下漫天遍野的封装,JQuery,EXT和Prototype.js封装的是javascript,jQue ...

  9. openstack的网络配置

    首先在浏览器输入咱们的控制节点的ip地址登陆horizon,也就是dashboard控制页面 输入好用户名与密码,这时输入的用户名与密码会与我们的老大哥keystone进行认证.确认你输入的这个用户有 ...

  10. C++解析(30):关于指针判别、构造异常和模板二义性的疑问

    0.目录 1.指针的判别 2.构造中的异常 2.1 如果构造函数中抛出异常会发生什么? 2.2 如果析构函数中抛出异常会发生什么? 3.令人迷惑的写法 3.1 模板中的二义性 3.2 函数异常声明 4 ...