[HNOI2012]集合选数 --- 状压DP
[HNOI2012]集合选数
题目描述
《集合论与图论》这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中。
同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数,
如何求出\({1,2,3...n}\) 的满足上述约束条件的子集的个数(只需输出对 \(10^{9}+1\) 取模的结果),现在这个问题就交给你了。
输入格式:
只有一行,其中有一个正整数 \(n\)
30%的数据满足 \(n<=20\)。
100%数据满足 \(n<=100000\)。
输出格式:
仅包含一个正整数,表示\({1, 2,..., n}\)有多少个满足上述约束条件 的子集。
\begin{bmatrix}
&1 &2 &4 &8 \;\;\\
&3 &6 &12 &24 \;\;\\
&9 &18 &36 &72 \;\;
\end{bmatrix}
#include <cstdio>
#include <cstring>
#include <bitset>
#define mod (100000001)
#define sid 200050
#define ri register int
using namespace std; inline void up(int &x, int y) {
x += y; if(x >= mod) x -= mod;
} inline void mu(int &x, int y) {
long long tmp = (1ll * x * y) % mod;
x = (int)tmp;
} int n;
bitset <> flag;
int num[][], lim[], bit[];
int dp[][sid], ans = ; inline int Solve(int kp) {
memset(num, , sizeof(num));
num[][] = kp;
for(ri i = ; i <= ; i ++) lim[i] = ;
for(ri i = ; i <= ; i ++)
if(num[][i - ] * <= n) num[][i] = num[][i - ] * ;
for(ri i = ; i <= ; i ++) {
if(num[i - ][] * > n) break;
num[i][] = num[i - ][] * ;
for(ri j = ; j <= ; j ++)
if(num[i][j - ] * <= n) num[i][j] = num[i][j - ] * ;
}
for(ri i = ; i <= ; i ++)
for(ri j = ; j <= ; j ++)
if(num[i][j]) lim[i] |= bit[j - ], flag[num[i][j]] = ;
for(ri i = ; i <= ; i ++)
for(ri j = ; j <= lim[i]; j ++) dp[i][j] = ;
dp[][] = ;
for(ri i = ; i <= ; i ++)
for(ri j = ; j <= lim[i - ]; j ++)
if(dp[i - ][j])
for(ri k = ; k <= lim[i]; k ++)
if((k & (k >> )) == && (j & k) == )
up(dp[i][k], dp[i - ][j]);
return dp[][];
} inline void DP() {
for(ri i = ; i <= ; i ++) bit[i] = << i;
for(ri i = ; i <= n; i ++) if(!flag[i]) mu(ans, Solve(i));
printf("%d\n", ans);
} int main() {
scanf("%d", &n);
DP();
return ;
}
sad
[HNOI2012]集合选数 --- 状压DP的更多相关文章
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...
- 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$
正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...
- $HNOI2012\ $ 集合选数 状压$dp$
\(Des\) 求对于正整数\(n\leq 1e5\),{\(1,2,3,...,n\)}的满足约束条件:"若\(x\)在该子集中,则\(2x\)和\(3x\)不在该子集中."的子 ...
- bzoj 2734 [HNOI2012]集合选数 状压DP+预处理
这道题很神啊…… 神爆了…… 思路大家应该看别的博客已经知道了,但大部分用的插头DP.我加了预处理,没用插头DP,一行一行来,速度还挺快. #include <cstdio> #inclu ...
- 【BZOJ-2732】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- 【BZOJ-2734】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- BZOJ_2734_[HNOI2012]集合选数_构造+状压DP
BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...
- 2734: [HNOI2012]集合选数
2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...
随机推荐
- Spring Data JPA笔记
1. Spring Data JPA是什么 Spring Data JPA是Spring Data大家族中的一员,它对对持久层做了简化,用户只需要声明方法的接口,不需要实现该接口,Spring Dat ...
- JS几个常用的工具函数
一个项目中JS也不可避免会出现重用,所以可以像Java一样抽成工具类,下面总结了几个常用的函数: 1.日期处理函数 将日期返回按指定格式处理过的字符串: function Format(now,mas ...
- Mysql储存过程6: in / out / inout
in 为向函数传送进去的值 out 为函数向外返回的值 intout 传送进去的值, 并且还返回这个值 )) begin then select 'true'; else select 'false' ...
- Wireshark抓包保存文件(图片,视频,音频等)
1.首先选择一个图片的分组 如图的9801 就是JPG 2.对下面的窗口里面选中JPEG File Interchange Format 右键选择 导出分组字节流 3.文件输入XXX.jpg,注意保存 ...
- 服务器部署之nginx的配置
nginx可作为Web和 反向代理 服务器,在高连接并发的情况下,Nginx是Apache服务器不错的替代品.下面记录一下自己对nginx的配置和使用. nginx的安装 环境:oracle-linu ...
- Machine Learning系列--判别式模型与生成式模型
监督学习的任务就是学习一个模型,应用这一模型,对给定的输入预测相应的输出.这个模型的一般形式为决策函数:$$ Y=f(X) $$或者条件概率分布:$$ P(Y|X) $$监督学习方法又可以分为生成方法 ...
- 2017 NWERC
2017 NWERC Problem A. Ascending Photo 题目描述:给出一个序列,将其分成\(m\)份(不需要均等),使得将这\(m\)份重新排列后构成的是不下降序列,输出最小的\( ...
- 中国区的Azure添加到 VSTS 的 Service Endpoint
把中国区的Azure添加到 VSTS (Visual Studio Team System) 的 Service Endpoint. 这个是使用 VSTS 自动部署到中国区Azure的前置条件. Se ...
- python3.6升级及setuptools、pip安装
升级python3.6 1.打开官网www.python.org,找到最新3.6.3版本,复制下载链接 2.创建/app目录,wget下载到该目录下,编译安装 mkdir /app cd /app w ...
- CentOS下NTP安装配置
安装yum install ntp 配置文件 /etc/ntp.confrestrict default kod nomodifynotrap nopeer noqueryrestrict -6 ...