Use a TL431 shunt regulator to limit high ac input voltage
Most isolated, offline SMPSs (switched-mode power supplies), including flyback, forward, and resonant, must operate at input voltages of 90 to 260V rms. Some cases even use line-to-line voltages of 400V rms±10%, leading to increased component-voltage ratings and, thus, increased cost of the overall design. In such cases, it is preferable to use input-limiting circuits, allowing you to increase the input voltage to 440V rms without damaging the power-supply components.
The circuit in Figure 1 limits, or clamps, input-ac voltages higher than 260V rms to levels safe for the operation of the power MOSFET in an SMPS. The circuit employs MOSFET Q1 working as a 100-Hz switch and shunt-regulator IC1, a TL431CZ, setting the clamped high-voltage level by divider R2 and R4. The circuit uses the component values shown. The clamped output voltage is 360V dc, the input voltage is 260V rms, and the maximum input voltage is 440V rms. The circuit was tested at power levels of 5 to 10W.
At an input voltage of less than 260V rms, Point C is less than 2.5V, and IC1 is off, sinking the minimum off-state cathode current. Zener diode D2 breaks down to 15V, ensuring a stable on-state for Q1. This operation is the normal condition of Q1 at input voltages lower than 260V rms. Accordingly, at these voltage levels, the circuit works as a standard full-bridge rectifier under capacitive load C3.
At an input voltage of 260V rms or greater, Point C becomes higher than 2.5V, and IC1turns on, diverting and sinking the current from D2. The gate-to-source voltage of Q1drops to approximately 2V, and Q1 switches off. Now, no current flows to charge bulk capacitor C3 even if the D1 bridge-rectifier diodes are forward-biased. The rectified input-ac voltage is higher than the voltage across C3, but Q1 is off, the loop is interrupted, and no current flows. Accordingly, the output-dc voltage across C3 gets limited because no charging current is available.
When the rectified ac-input voltage starts decreasing, it eventually hits the 2.5V threshold level of Point C, and Q1 again switches on. But current does not flow because the rectifier bridge’s diodes are now reverse-biased; the rectified input-ac voltage is less than the voltage across C3. The voltage across C3 decreases at a rate that the output-power level determines. Eventually, the voltage across C3 and the rectified input-ac voltage intersect at a level when the rectifier bridge’s diodes get forward-biased. Q1 is still on; therefore, charging current starts flowing. A short interval follows, during which both Q1 and D1 conduct. The short charging pulses replenish the energy loss, increasing the voltage to the limited level. When the input voltage gets higher than 260V rms, Q1 again switches off, and the whole process repeats.
Q1 has small power dissipation. During every switching period, the MOSFET is on for only 450 µsec, resulting in high efficiency for this high-voltage-limiting circuit. You can use it as a MOSFET switch with the STMicroelectronics SuperMesh MOSFET STP4NK50Z, which comes in a TO-220 package, but you can also use a Dpak to save space because the MOSFET is not a dissipative-voltage limiter. The current through Q1gets interrupted when the 50/60-Hz rectifying diodes are forward-biased. This current interruption causes ringing on the drain-to-source voltage. The clamping circuit passed the conducted EMI (electromagnetic-interference) tests, according to EN 55022 Class B, using peak and average detection. The 1-mH, 0.2A chokes, L1 and L2, suppress EMI. The 220-nF, 440V-ac capacitor, C1, is a simple snubber element across the rectifying diodes of the D1 bridge.
Use a TL431 shunt regulator to limit high ac input voltage的更多相关文章
- MOSFET shunt regulator substitutes for series regulator
You would normally use a series linear regulator or a dc/dc converter to obtain 3V dc from a higher ...
- Regulator IC forms convenient overvoltage detector
Figure 1 shows a simple, stand-alone overvoltage detector. The intent of the circuit is to monitor a ...
- Linear regulator=low-cost dc/dc converter
The circuit in Figure 1 is a good choice if you need a power supply with high efficiency and you don ...
- Simple dc/dc converter increases available power in dual-voltage system
The schematic in Figure 1 shows a way to increase the power available from a current-limited 5V supp ...
- Tiny microcontroller hosts dual dc/dc-boost converters
Batteries are the typical power sources for portable-system applications, and it is not unusual thes ...
- BQ24296充电管理芯片使用过程中的注意事项
BQ24296遇到的一点问题 概述:BQ24296是TI出品的具有窄范围VDC控制.基于I2C通讯的最大支持3A充电电流的开关式电源路径管理芯片.可以轻松实现2A以上的大电流充电,能量转换效率达到90 ...
- Cascode MOSFET increases boost regulator's input- and output-voltage ranges
Targeting use in portable-system applications that require raising a battery's voltage to a higher l ...
- Changing the Output Voltage of a Switching Regulator on the Fly
http://www.powerguru.org/changing-the-output-voltage-of-a-switching-regulator-on-the-fly/ There are ...
- Linux Regulator Framework(2)_regulator driver
转自蜗窝科技:http://www.wowotech.net/pm_subsystem/regulator_driver.html 说实话,这篇好难懂啊... 1. 前言 本文从regulator d ...
随机推荐
- HDU 2544 最短路(floyd+bellman-ford+spfa+dijkstra队列优化)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 题目大意:找点1到点n的最短路(无向图) 练一下最短路... dijkstra+队列优化: #i ...
- C++大数据处理
转:http://blog.csdn.net/v_july_v/article/details/7382693 作者:July出处:结构之法算法之道blog 前言 一般而言,标题含有“秒杀”,“99% ...
- 小甲鱼C++笔记(上)1-24
一 OO思想:每个对象都是一个完整的独立的个体,由相关的属性和行为组合与外界分隔 OO思想的特点:1封装 把对象的属性和方法结合成一个独立的系统单位,并尽可能隐藏内部细节 2抽象 对一类公共问题进行统 ...
- jquery validate表单验证插件的基本使用方法及功能拓展
1 表单验证的准备工作 在开启长篇大论之前,首先将表单验证的效果展示给大家. 1.点击表单项,显示帮助提示 2.鼠标离开表单项时,开始校验元素 3.鼠标离开后的正确.错误提示及鼠标移入时的帮助提 ...
- 用strtok函数分割字符串
用strtok函数分割字符串 需要在loadrunner里面获得“15”(下面红色高亮的部分),并做成关联参数. //Body response 内容: <BODY><; PRE&g ...
- 转:xxe attack学习
小结 1.http包发送类型:content-type:text/xml2.xxe漏洞非常危险, 因为此漏洞会造成服务器上敏感数据的泄露,和潜在的服务器拒绝服务攻击.要去校验DTD(document ...
- 洛谷P2922 [USACO008DEC] 秘密消息Secret Message [Trie树]
洛谷传送门,BZOJ传送门 秘密消息Secret Message Description 贝茜正在领导奶牛们逃跑.为了联络,奶牛们互相发送秘密信息. 信息是二进制的,共有M(1≤M≤5 ...
- DateFormat 线程安全
SimpleDateformat 线程不安全 SimpleDateFormat 继承自 DateFormat, SimpleDateFormat中的parse方法override父类DateForma ...
- Yii apache配置站点出现400 Bad Request 的解决方法
<VirtualHost *:80> ServerName localhost ServerAlias localhost DocumentRoot "/www/frogCms/ ...
- noip2012疫情控制 题解
题目大意 给出一棵n个节点的树,根是1,要在除根节点以外的点建立检查点,使得从每条根到叶子的路径上都至少存在一个检查点.检查点由军队来建立.初始军队的位置是给定的,移动军队走一条边需要花费这条边的权值 ...