BZOJ1857 Scoi2010 传送带


Description

在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段。两条传送带分别为线段AB和线段CD。lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R。现在lxhgww想从A点走到D点,他想知道最少需要走多长时间

Input

输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By 第二行是4个整数,表示C和D的坐标,分别为Cx,Cy,Dx,Dy 第三行是3个整数,分别是P,Q,R

Output

输出数据为一行,表示lxhgww从A点走到D点的最短时间,保留到小数点后2位

Sample Input

0 0 0 100

100 0 100 100

2 2 1

Sample Output

136.60

HINT

对于100%的数据,1<= Ax,Ay,Bx,By,Cx,Cy,Dx,Dy<=1000

1<=P,Q,R<=10


三分套三分


#include<bits/stdc++.h>
using namespace std;
#define eps 1e-3
int ax,ay,bx,by,cx,cy,dx,dy;
int p,q,r;
double dis(double x1,double y1,double x2,double y2){
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
double calc(double x,double y){
double lx=cx,ly=cy,rx=dx,ry=dy;
while(fabs(rx-lx)>eps||fabs(ry-ly)>eps){
double x1=lx+(rx-lx)/3,y1=ly+(ry-ly)/3;
double x2=rx-(rx-lx)/3,y2=ry-(ry-ly)/3;
double t1=dis(ax,ay,x,y)/p+dis(x,y,x1,y1)/r+dis(x1,y1,dx,dy)/q;
double t2=dis(ax,ay,x,y)/p+dis(x,y,x2,y2)/r+dis(x2,y2,dx,dy)/q;
if(t1<t2)rx=x2,ry=y2;
else lx=x1,ly=y1;
}
return dis(ax,ay,x,y)/p+dis(x,y,lx,ly)/r+dis(lx,ly,dx,dy)/q;
}
int main(){
cin>>ax>>ay>>bx>>by>>cx>>cy>>dx>>dy>>p>>q>>r;
double lx=ax,ly=ay,rx=bx,ry=by;
while(fabs(rx-lx)>eps||fabs(ry-ly)>eps){
double x1=lx+(rx-lx)/3,y1=ly+(ry-ly)/3;
double x2=rx-(rx-lx)/3,y2=ry-(ry-ly)/3;
if(calc(x1,y1)<calc(x2,y2))rx=x2,ry=y2;
else lx=x1,ly=y1;
}
printf("%.2lf",calc(lx,ly));
return 0;
}

BZOJ1857 Scoi2010 传送带 【三分】的更多相关文章

  1. bzoj1857: [Scoi2010]传送带--三分套三分

    三分套三分模板 貌似只要是单峰函数就可以用三分求解 #include<stdio.h> #include<string.h> #include<algorithm> ...

  2. [BZOJ1857][SCOI2010]传送带-[三分]

    Description 传送门 Solution 三分套三分.代码简单但是证明苦兮兮.. 假如我们在AB上选了一个点G,求到该点到D的最小时间. 图中b与CD垂直.设目前从G到D所耗时间最短的路径为G ...

  3. 【BZOJ1857】[Scoi2010]传送带 三分套三分

    [BZOJ1857][Scoi2010]传送带 Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度 ...

  4. 2018.06.30 BZOJ1857: [Scoi2010]传送带(三分套三分)

    1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...

  5. 【BZOJ-1857】传送带 三分套三分

    1857: [Scoi2010]传送带 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 1077  Solved: 575[Submit][Status][ ...

  6. bzoj 1857: [Scoi2010]传送带 三分

    题目链接 1857: [Scoi2010]传送带 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 934  Solved: 501[Submit][Stat ...

  7. Bzoj 1857: [Scoi2010]传送带(三分套三分)

    1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...

  8. 洛谷P2571 [SCOI2010]传送带 [三分]

    题目传送门 传送带 题目描述 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移 ...

  9. BZOJ1857 [Scoi2010]传送带 【三分法】

    题目链接 BZOJ1857 题解 画画图就发现实际上是在\(AB\)上和\(CD\)上分别选两个点\(E\),\(F\),使得\(t_{AE} + t_{EF} + t_{FD}\)最小 然后猜想到当 ...

随机推荐

  1. codeforces796E Exam Cheating

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  2. [sping]xml配置文件中factory-bean与factory-method(spring使用工厂方法注入bean)

    public class CarFactory { //非静态方法 public Car createCar(){ Car car = new Car(); car.setBrand("BM ...

  3. http协议报头详解

    目录: 1. http协议简介 2. http报头举例 3. http报头详解 4. 几个字段的说明 5. 总结 6. 参考文章 1. http协议简介 HTTP是Hyper Text Transfe ...

  4. Selenium入门练习(二)

    自动登录博客园并且退出登录 package TestNG; import org.testng.annotations.Test;import org.testng.annotations.Befor ...

  5. iPhone 和Android应用,特殊的链接:打电话,短信,email

    下面的这篇文章主要是说,网页中的链接如何写,可以激活电话的功能. 例如,页面中展示的是一个电话号码,当用户在手机浏览器里面点击这个电话号码的时候,手机会弹出拨号的面板,或者是短信程序会启动等. 1. ...

  6. Java 9的JDK中值得期待的:不仅仅是模块化

    在多次延期后,Java 9将于9月21日以Java开发工具包9的形式出现,这是自2014年3月以来,Java标准版的第一次重大升级.官方列出了JDK 9的大约90个新特性,模块化是最主要的一个.将Ja ...

  7. Zeratul的完美区间(线段树||RMQ模板题)

    原题大意:原题链接 给定元素无重复数组,查询给定区间内元素是否连续 解体思路:由于无重复元素,所以如果区间内元素连续,则该区间内的最大值和最小值之差应该等于区间长度(r-l) 解法一:线段树(模板题) ...

  8. python进行linux系统监控

      python进行linux系统监控 Linux系统下: 静态指标信息: 名称 描述 单位 所在文件 mem_total 内存总容量 KB /proc/meminfo disks 磁盘相关信息 - ...

  9. Highcharts 时间序列,可缩放的图表;Highcharts X 轴翻转曲线图;Highcharts 带标记曲线图

    Highcharts 时间序列,可缩放的图表 配置 图表 配置可缩放图表. chart.zoomType 指定了用户可以拖放的尺寸,用户可以通过拖动鼠标来放大,可能值是x,y或xy: var char ...

  10. Python----Paramiko模块和堡垒机实战

    paramiko模块 paramiko是一个用于做远程控制的模块,使用该模块可以对远程服务器进行命令或文件操作,值得一说的是,fabric和ansible内部的远程管理就是使用的paramiko来现实 ...