莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数。

易知$$F(p) = \lfloor \frac{n}{p} \rfloor * \lfloor \frac{n}{p} \rfloor$$

\(F(x) = \sum_{x|d} f(d)\)

根据莫比乌斯反演得,\(f(x) = \sum_{x|d}u(\frac{d}{x})F(d)\)

所求的是\(gcd(i,j)\)为素数的对数,所以\(ans = \sum_{isprime(p)}f(p)\)

\[ans = \sum_{p}^{N}\lfloor \frac{N}{d}\rfloor*\lfloor \frac{N}{d}\rfloor\sum_{p|d}u(\frac{d}{p})
\]

其中\(d=i*p\)

\(\sum_{p|d}u(\frac{d}{p})\)打表求出

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn=1e7+5;
bool vis[maxn];
int prime[maxn],mu[maxn];
int sum[maxn];
void init(){
memset(vis,false,sizeof(vis));
mu[1] = 1;
prime[0] = 0;
int cnt=0;
for(int i=2;i<maxn;++i){
if(!vis[i]){
mu[i] = -1;
sum[i] = 1;
prime[++cnt] = i;
}
for(int j=1;j<=cnt;++j){
if(i*prime[j] >= maxn) break;
vis[i*prime[j]] = true;
if(i % prime[j]){
mu[i*prime[j]] = -mu[i];
sum[i*prime[j]] = mu[i] - sum[i];
}
else{
mu[i*prime[j]] = 0;
sum[i*prime[j]] = mu[i];
break;
}
}
}
} int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
init();
LL N;
while(scanf("%lld",&N)==1){
LL res=0;
for(LL i=1;i<=N;++i){
res += sum[i]*(N/i)*(N/i);
}
printf("%lld\n",res);
}
return 0;
}

HYSBZ - 2818 Gcd (莫比乌斯反演)的更多相关文章

  1. Gcd HYSBZ - 2818 (莫比乌斯反演)

    Gcd \[ Time Limit: 10000 ms\quad Memory Limit: 262144 kB \] 题意 求 \(gcd\left(x,y\right) = p\) 的对数,其中\ ...

  2. BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 2534  Solved: 1129 [Submit][Status][Discu ...

  3. Bzoj 2818: Gcd(莫比乌斯反演)

    2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对 ...

  4. $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数

    正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...

  5. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  6. ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)

    Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...

  7. HYSBZ 2818 Gcd【欧拉函数/莫比乌斯】

    I - Gcd HYSBZ - 2818 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample In ...

  8. HDU1695 GCD(莫比乌斯反演)

    传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的 ...

  9. hdu 1695 GCD 莫比乌斯反演入门

    GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...

随机推荐

  1. 一些 JS页面的 调用方式init()

    //初始化.... var initAccManPage=function() { //初始化... var initChangeBtn = function(){ $("#btnChang ...

  2. 使用PHP,jsonp,jquery实现跨域

    html代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...

  3. JS-Zepto.js中文链接

    附上zepto.js的中文链接:http://www.css88.com/doc/zeptojs_api/ 小伙伴再也不用担心“这特么到底啥意思!”

  4. 问道游戏-寻路CALL心得

    寻路CALL查找几种方法 第一种 bp send 在小地图上点击重点.看看是否断下 断下这是最简单的 第二种 查找用户当前坐标内存地址下写入断点 通过堆栈追溯 运气好也可以找到 第三种 查找终点坐标地 ...

  5. fopen()函数文件模板中w,w+,a,a+的区别

    "w" 写入方式打开,将文件指针指向文件头并将文件大小截为零.如果文件不存在则尝试创建之. "w+" 读写方式打开,将文件指针指向文件头并将文件大小截为零.如果 ...

  6. 160426、JavaScript 秘密花园

    简介 关于作者 这篇文章的作者是两位 Stack Overflow 用户, 伊沃·韦特泽尔 Ivo Wetzel(写作) 和 张易江 Zhang Yi Jiang(设计). 贡献者 贡献者 中文翻译 ...

  7. Python--Get and Post

    #python3 get and post 简单封装 from urllib import request, parse import json def RequestMethod(methodR, ...

  8. HDU 4417 Super Mario(线段树)

    Super Mario Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  9. 从外部导入数据进MySQL

    语法格式: LOAD DATA LOCAL INFILE 'E://test.txt' INTO TABLE test_table FIELDS TERMINATED BY ' ' #ENCLOSED ...

  10. BSSID,SSID,ESSID区别

    SSID(Service Set Identifier)   SSID,AP唯一的ID码,许多人认为可以将SSID写成ESSID,其实不然,SSID是个笼统的概念,包含了ESSID和BSSID,用来区 ...