github地址:https://github.com/tensorflow/models.git

本文分析tutorial/image/cifar10教程项目的cifar10_input.py代码。

给外部调用的方法是:

distorted_inputs()和inputs()
cifar10.py文件调用了此文件中定义的方法。
"""Routine for decoding the CIFAR-10 binary file format."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import os from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf # 定义图片的像素,原生图片32 x 32
# Process images of this size. Note that this differs from the original CIFAR
# image size of 32 x 32. If one alters this number, then the entire model
# architecture will change and any model would need to be retrained.
# IMAGE_SIZE = 24
IMAGE_SIZE = 32
# Global constants describing the CIFAR-10 data set.
# 分类数量
NUM_CLASSES = 10
# 训练集大小
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000
# 评价集大小
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 10000 # 从CIFAR10数据文件中读取样例
# filename_queue一个队列的文件名
def read_cifar10(filename_queue): class CIFAR10Record(object):
pass result = CIFAR10Record() # Dimensions of the images in the CIFAR-10 dataset.
# See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
# input format.
# 分类结果的长度,CIFAR-100长度为2
label_bytes = 1 # 2 for CIFAR-100
result.height = 32
result.width = 32
# 3位表示rgb颜色(0-255,0-255,0-255)
result.depth = 3
image_bytes = result.height * result.width * result.depth
# Every record consists of a label followed by the image, with a
# fixed number of bytes for each.
# 单个记录的总长度=分类结果长度+图片长度
record_bytes = label_bytes + image_bytes # Read a record, getting filenames from the filename_queue. No
# header or footer in the CIFAR-10 format, so we leave header_bytes
# and footer_bytes at their default of 0.
# 读取
reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
result.key, value = reader.read(filename_queue) # Convert from a string to a vector of uint8 that is record_bytes long.
record_bytes = tf.decode_raw(value, tf.uint8) # 第一位代表lable-图片的正确分类结果,从uint8转换为int32类型
# The first bytes represent the label, which we convert from uint8->int32.
result.label = tf.cast(
tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32) # 分类结果之后的数据代表图片,我们重新调整大小
# The remaining bytes after the label represent the image, which we reshape
# from [depth * height * width] to [depth, height, width].
depth_major = tf.reshape(
tf.strided_slice(record_bytes, [label_bytes],
[label_bytes + image_bytes]),
[result.depth, result.height, result.width])
# 格式转换,从[颜色,高度,宽度]--》[高度,宽度,颜色]
# Convert from [depth, height, width] to [height, width, depth].
result.uint8image = tf.transpose(depth_major, [1, 2, 0]) return result # 构建一个排列后的一组图片和分类
def _generate_image_and_label_batch(image, label, min_queue_examples,
batch_size, shuffle): # Create a queue that shuffles the examples, and then
# read 'batch_size' images + labels from the example queue.
# 线程数
num_preprocess_threads = 8
if shuffle:
images, label_batch = tf.train.shuffle_batch(
[image, label],
batch_size=batch_size,
num_threads=num_preprocess_threads,
capacity=min_queue_examples + 3 * batch_size,
min_after_dequeue=min_queue_examples)
else:
images, label_batch = tf.train.batch(
[image, label],
batch_size=batch_size,
num_threads=num_preprocess_threads,
capacity=min_queue_examples + 3 * batch_size) # Display the training images in the visualizer.
tf.summary.image('images', images) return images, tf.reshape(label_batch, [batch_size]) # 为CIFAR评价构建输入
# data_dir路径
# batch_size一个组的大小
def distorted_inputs(data_dir, batch_size): filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i)
for i in xrange(1, 6)]
for f in filenames:
if not tf.gfile.Exists(f):
raise ValueError('Failed to find file: ' + f) # Create a queue that produces the filenames to read.
filename_queue = tf.train.string_input_producer(filenames) # Read examples from files in the filename queue.
read_input = read_cifar10(filename_queue)
reshaped_image = tf.cast(read_input.uint8image, tf.float32) height = IMAGE_SIZE
width = IMAGE_SIZE # Image processing for training the network. Note the many random
# distortions applied to the image.
# 随机裁剪图片
# Randomly crop a [height, width] section of the image.
distorted_image = tf.random_crop(reshaped_image, [height, width, 3])
# 随机旋转图片
# Randomly flip the image horizontally.
distorted_image = tf.image.random_flip_left_right(distorted_image) # Because these operations are not commutative, consider randomizing
# the order their operation.
# 亮度变换
distorted_image = tf.image.random_brightness(distorted_image,
max_delta=63)
# 对比度变换
distorted_image = tf.image.random_contrast(distorted_image,
lower=0.2, upper=1.8) # Subtract off the mean and divide by the variance of the pixels.
# Linearly scales image to have zero mean and unit norm
# 标准化
float_image = tf.image.per_image_standardization(distorted_image) # Set the shapes of tensors.
# 设置张量的型
float_image.set_shape([height, width, 3])
read_input.label.set_shape([1]) # Ensure that the random shuffling has good mixing properties.
# 确保洗牌的随机性
min_fraction_of_examples_in_queue = 0.4
min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN *
min_fraction_of_examples_in_queue)
print('Filling queue with %d CIFAR images before starting to train. '
'This will take a few minutes.' % min_queue_examples) # Generate a batch of images and labels by building up a queue of examples.
return _generate_image_and_label_batch(float_image, read_input.label,
min_queue_examples, batch_size,
shuffle=True) # 为CIFAR评价构建输入
# eval_data使用训练还是评价数据集
# data_dir路径
# batch_size一个组的大小
def inputs(eval_data, data_dir, batch_size): if not eval_data:
filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i)
for i in xrange(1, 6)]
num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
else:
filenames = [os.path.join(data_dir, 'test_batch.bin')]
num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL for f in filenames:
if not tf.gfile.Exists(f):
raise ValueError('Failed to find file: ' + f) # Create a queue that produces the filenames to read.
# 文件名队列
filename_queue = tf.train.string_input_producer(filenames) # Read examples from files in the filename queue.
# 从文件中读取解析出的图片队列
read_input = read_cifar10(filename_queue)
# 转换为float
reshaped_image = tf.cast(read_input.uint8image, tf.float32) height = IMAGE_SIZE
width = IMAGE_SIZE # Image processing for evaluation.
# Crop the central [height, width] of the image.
# 剪切图片的中心
resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image,
height, width) # Subtract off the mean and divide by the variance of the pixels.
# 标准化图片
float_image = tf.image.per_image_standardization(resized_image) # Set the shapes of tensors.
# 设置张量的型
float_image.set_shape([height, width, 3])
read_input.label.set_shape([1]) # Ensure that the random shuffling has good mixing properties.
# 确保洗牌的随机性
min_fraction_of_examples_in_queue = 0.4
min_queue_examples = int(num_examples_per_epoch *
min_fraction_of_examples_in_queue) # Generate a batch of images and labels by building up a queue of examples.
return _generate_image_and_label_batch(float_image, read_input.label,
min_queue_examples, batch_size,
shuffle=False)

Tensorflow样例代码分析cifar10的更多相关文章

  1. TensorFlow入门之MNIST样例代码分析

    这几天想系统的学习一下TensorFlow,为之后的工作打下一些基础.看了下<TensorFlow:实战Google深度学习框架>这本书,目前个人觉得这本书还是对初学者挺友好的,作者站在初 ...

  2. amaze样例页面分析(一)

    amaze样例页面分析(一) 一.总结 1.从审查(inspect)中是很清楚的可以弄清楚这些part之间的结构关系的 2.一者在于弄清楚他们之间的结构关系,二者在于知道结构的每一部分是干嘛的 3.i ...

  3. 使用ffmpeg实现转码样例(代码实现)

    分类: C/C++ 使用ffmpeg实现转码样例(代码实现) 使用ffmpeg转码主要工作如下: Demux -> Decoding -> Encoding -> Muxing 其中 ...

  4. java 线程、线程池基本应用演示样例代码回想

    java 线程.线程池基本应用演示样例代码回想 package org.rui.thread; /** * 定义任务 * * @author lenovo * */ public class Lift ...

  5. ECharts组件应用样例代码

    一.从Echarts官网上下载最新版本组件 Echarts是百度开发的开源Web图表组件,界面美观,使用简单.组件下载地址:http://echarts.baidu.com/echarts2/doc/ ...

  6. java文件夹相关操作 演示样例代码

    java文件夹相关操作 演示样例代码 package org.rui.io; import java.io.File; import java.io.FilenameFilter; import ja ...

  7. 10分钟理解Android数据库的创建与使用(附具体解释和演示样例代码)

    1.Android数据库简单介绍. Android系统的framework层集成了Sqlite3数据库.我们知道Sqlite3是一种轻量级的高效存储的数据库. Sqlite数据库具有以下长处: (1) ...

  8. C#调用 Oracle 存储过程样例代码

    -- 建表 CREATE TABLE sale_report (      sale_date DATE NOT NULL ,      sale_item VARCHAR(2) NOT NULL , ...

  9. java 又一次抛出异常 相关处理结果演示样例代码

    java 又一次抛出异常 相关处理结果演示样例代码 package org.rui.ExceptionTest; /** * 又一次抛出异常 * 在某些情况下,我们想又一次掷出刚才产生过的违例,特别是 ...

随机推荐

  1. Alpha冲刺(十)

    Information:   队名:彳艮彳亍团队 组长博客:戳我进入 作业博客:班级博客本次作业的链接 Details: 组员1(组长)柯奇豪 过去两天完成了哪些任务 本人负责的模块(共享编辑)的前端 ...

  2. GitHub操作总结

    GitHub操作总结 : 总结看不明白就看下面的详细讲解. . 作者:万境绝尘 转载请注明出处:http://blog.csdn.net/shulianghan/article/details/188 ...

  3. 负载均衡-会话保持,session同步(转载)

    一,什么负载均衡一个新网站是不要做负载均衡的,因为访问量不大,流量也不大,所以没有必要搞这些东西.但是随着网站访问量和流量的快速增长,单台服务器受自身硬件条件的限制,很难承受这么大的访问量.在这种情况 ...

  4. layui中折叠面板的使用

    运用折叠面板后 可以让页面更加整洁 有什么不懂的可以留言 代码放到底部 需要引入的文件 JQuery代码: html代码 <div class="layui-colla-item&qu ...

  5. [LeetCode 题解] Combination Sum

    前言   [LeetCode 题解]系列传送门:  http://www.cnblogs.com/double-win/category/573499.html   1.题目描述 Given a se ...

  6. New Year, New Devs: Sharpen your C# Skills

    At the beginning of each new year, many people take on a challenge to learn something new or commit ...

  7. C# 异常日志记录

    using System;using System.Collections.Generic;using System.IO;using System.Linq;using System.Web; na ...

  8. 【07】循序渐进学 docker:数据持久化

    写在前面的话 学到这里相信有心的朋友都发现问题了,我们每次都会去删掉容器,在创建新的容器.那数据怎么办?岂不删库跑路了? 就算不是数据库,假设公司有日志保留的需求,那每一次发布岂不日志都被干掉了? D ...

  9. winform datagridview记录的颜色设定

    DataGridViewCellStyle属性进行如下图的设置,预览可直接看到效果

  10. CentOS6.5更改语言设置

    yum grouplist |grep cn yum groupinstall “Chinese Support”——————————————yum groupinstall “Desktop”vi ...