简介

HDFS(Hadoop Distributed File System )Hadoop分布式文件系统。是根据google发表的论文翻版的。论文为GFS(Google File System)Google 文件系统(中文英文)。

HDFS有很多特点

① 保存多个副本,且提供容错机制,副本丢失或宕机自动恢复。默认存3份。

② 运行在廉价的机器上。

③ 适合大数据的处理。多大?多小?HDFS默认会将文件分割成block,64M为1个block。然后将block按键值对存储在HDFS上,并将键值对的映射存到内存中。如果小文件太多,那内存的负担会很重。

如上图所示,HDFS也是按照Master和Slave的结构。分NameNode、SecondaryNameNode、DataNode这几个角色。

NameNode:是Master节点,是大领导。管理数据块映射;处理客户端的读写请求;配置副本策略;管理HDFS的名称空间;

SecondaryNameNode:是一个小弟,分担大哥namenode的工作量;是NameNode的冷备份;合并fsimage和fsedits然后再发给namenode。

DataNode:Slave节点,奴隶,干活的。负责存储client发来的数据块block;执行数据块的读写操作。

热备份:b是a的热备份,如果a坏掉。那么b马上运行代替a的工作。

冷备份:b是a的冷备份,如果a坏掉。那么b不能马上代替a工作。但是b上存储a的一些信息,减少a坏掉之后的损失。

fsimage:元数据镜像文件(文件系统的目录树。)

edits:元数据的操作日志(针对文件系统做的修改操作记录)

namenode内存中存储的是=fsimage+edits。

SecondaryNameNode负责定时默认1小时,从namenode上,获取fsimage和edits来进行合并,然后再发送给namenode。减少namenode的工作量。


工作原理

写操作:

有一个文件FileA,100M大小。Client将FileA写入到HDFS上。

HDFS按默认配置。

HDFS分布在三个机架上Rack1,Rack2,Rack3。

a. Client将FileA按64M分块。分成两块,block1和Block2;

b. Client向nameNode发送写数据请求,如图蓝色虚线①------>。

c. NameNode节点,记录block信息。并返回可用的DataNode,如粉色虚线②--------->。

Block1: host2,host1,host3

Block2: host7,host8,host4

原理:

NameNode具有RackAware机架感知功能,这个可以配置。

若client为DataNode节点,那存储block时,规则为:副本1,同client的节点上;副本2,不同机架节点上;副本3,同第二个副本机架的另一个节点上;其他副本随机挑选。

若client不为DataNode节点,那存储block时,规则为:副本1,随机选择一个节点上;副本2,不同副本1,机架上;副本3,同副本2相同的另一个节点上;其他副本随机挑选。

d. client向DataNode发送block1;发送过程是以流式写入。

流式写入过程,

 1>将64M的block1按64k的package划分;

2>然后将第一个package发送给host2;

3>host2接收完后,将第一个package发送给host1,同时client想host2发送第二个package;

4>host1接收完第一个package后,发送给host3,同时接收host2发来的第二个package。

5>以此类推,如图红线实线所示,直到将block1发送完毕。

6>host2,host1,host3向NameNode,host2向Client发送通知,说“消息发送完了”。如图粉红颜色实线所示。

7>client收到host2发来的消息后,向namenode发送消息,说我写完了。这样就真完成了。如图黄色粗实线

8>发送完block1后,再向host7,host8,host4发送block2,如图蓝色实线所示。

9>发送完block2后,host7,host8,host4向NameNode,host7向Client发送通知,如图浅绿色实线所示。

10>client向NameNode发送消息,说我写完了,如图黄色粗实线。。。这样就完毕了。

分析,通过写过程,我们可以了解到:

写1T文件,我们需要3T的存储,3T的网络流量贷款。

在执行读或写的过程中,NameNode和DataNode通过HeartBeat进行保存通信,确定DataNode活着。如果发现DataNode死掉了,就将死掉的DataNode上的数据,放到其他节点去。读取时,要读其他节点去。

挂掉一个节点,没关系,还有其他节点可以备份;甚至,挂掉某一个机架,也没关系;其他机架上,也有备份。

读操作:

读操作就简单一些了,如图所示,client要从datanode上,读取FileA。而FileA由block1和block2组成。

那么,读操作流程为:

a. client向namenode发送读请求。

b. namenode查看Metadata信息,返回fileA的block的位置。

block1:host2,host1,host3

block2:host7,host8,host4

c. block的位置是有先后顺序的,先读block1,再读block2。而且block1去host2上读取;然后block2,去host7上读取;

上面例子中,client位于机架外,那么如果client位于机架内某个DataNode上,例如,client是host6。那么读取的时候,遵循的规律是:

优选读取本机架上的数据

转:HDFS运行原理的更多相关文章

  1. HDFS运行原理

    HDFS(Hadoop Distributed File System )Hadoop分布式文件系统.是根据google发表的论文翻版的.论文为GFS(Google File System)Googl ...

  2. Hadoop(六)之HDFS的存储原理(运行原理)

    前言 其实说到HDFS的存储原理,无非就是读操作和写操作,那接下来我们详细的看一下HDFS是怎么实现读写操作的! 一.HDFS读取过程 1)客户端通过调用FileSystem对象的open()来读取希 ...

  3. Hadoop基础-Hdfs各个组件的运行原理介绍

    Hadoop基础-Hdfs各个组件的运行原理介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.NameNode工作原理(默认端口号:50070) 1>.什么是NameN ...

  4. 【转载】Spark系列之运行原理和架构

    参考 http://www.cnblogs.com/shishanyuan/p/4721326.html 1. Spark运行架构 1.1 术语定义 lApplication:Spark Applic ...

  5. 【漫画解读】HDFS存储原理(转载)

    以简洁易懂的漫画形式讲解HDFS存储机制与运行原理. 一.角色出演 如上图所示,HDFS存储相关角色与功能如下: Client:客户端,系统使用者,调用HDFS API操作文件;与NN交互获取文件元数 ...

  6. 【转】【漫画解读】HDFS存储原理

    根据Maneesh Varshney的漫画改编,以简洁易懂的漫画形式讲解HDFS存储机制与运行原理. 一.角色出演 如上图所示,HDFS存储相关角色与功能如下: Client:客户端,系统使用者,调用 ...

  7. [Spark內核] 第41课:Checkpoint彻底解密:Checkpoint的运行原理和源码实现彻底详解

    本课主题 Checkpoint 运行原理图 Checkpoint 源码解析 引言 Checkpoint 到底是什么和需要用 Checkpoint 解决什么问题: Spark 在生产环境下经常会面临 T ...

  8. Spark核心技术原理透视一(Spark运行原理)

    在大数据领域,只有深挖数据科学领域,走在学术前沿,才能在底层算法和模型方面走在前面,从而占据领先地位. Spark的这种学术基因,使得它从一开始就在大数据领域建立了一定优势.无论是性能,还是方案的统一 ...

  9. 【漫画解读】HDFS存储原理

    根据Maneesh Varshney的漫画改编,以简洁易懂的漫画形式讲解HDFS存储机制与运行原理,非常适合Hadoop/HDFS初学者理解. 一.角色出演 如上图所示,HDFS存储相关角色与功能如下 ...

随机推荐

  1. arya使用流程

    1.github中的项目clone到本地(路径在最后),然后将arya文件夹复制到你的django工程中作为一个独立的app,该app实现了RBAC(基于角色的权限访问控制Role-Based Acc ...

  2. Sqlserver生成带数据的脚本

    右键数据库—>任务—>生成脚本 下一步 选择要导出数据库,下一步 编写数据脚本选择True,下一步 选择要导出的表,下一步 最后点击完成即可.

  3. 清晰讲解LSB、MSB和大小端模式及网络字节序

    时隔一个月又回到了博客园写文章,很开心O(∩_∩)O~~ 今天在做需求的涉及到一个固件版本的概念,其中固件组的人谈到了版本号从MSB到LSB排列,检索查阅后将所得整理如下. MSB.LSB? MSB( ...

  4. LinQ高级查询、组合查询、IQueryable集合类型

    LinQ高级查询: 1.模糊查询(包含) Repeater1.DataSource = con.car.Where(r =>r.name.Contains(s)).ToList(); 2.开头 ...

  5. 微服务—ELK分布式日志框架

    在微服务架构下,微服务被拆分成多个微小的服务,每个微小的服务都部署在不同的服务器实例上,当我们定位问题,检索日志的时候需要依次登录每台服务器进行检索. 这样是不是感觉很繁琐和效率低下.所以我们还需要一 ...

  6. 【VS2015】未能创建 Visual C# 2015编译器

    今天在安装完成Visual Studio 2015后,在执行update 3时出错,导致再次打开VS2015时提示错误:“未能创建 Visual C# 2015编译器”和“未能正确加载CSharpPa ...

  7. java压缩多个文件

    首先创建一个工具类,定义好接口,这里的参数1:fileList:多个文件的path+name2: zipFileName:压缩后的文件名 下面是代码,注释已经很详细了 public class ZIP ...

  8. 20145240《网络对抗》MSF基础应用

    MSF基础应用 一个主动攻击,如ms08_067 启动msf search ms08_067,查找相应的漏洞,查询可攻击的模块. 根据上述漏洞的模块use exploit/windows/smb/ms ...

  9. jdbctemplate中的queryForInt方法

    今天才发现,原来spring 3.2.2之后,jdbctemplate中的queryForInt已经被取消了! 看下代码: 原来是这样写的: String sql = "SELECT cou ...

  10. [BZOJ4552]排序

    Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题 ,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这 ...