POJ - 1330 Nearest Common Ancestors 最近公共祖先+链式前向星 模板题
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.
For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.
Write a program that finds the nearest common ancestor of two distinct nodes in a tree.
Input
Output
Sample Input
2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5
Sample Output
4
3
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
#include<deque>
#include<map>
#include<iostream>
using namespace std;
typedef long long LL;
const double pi=acos(-1.0);
const double e=exp();
const int N = ; #define lson i << 1,l,m
#define rson i << 1 | 1,m + 1,r
int cnt,ans;
int a,b,n;
int root;
int head[N];
int is_root[N];
int father[N];
int vis[N]; struct edge
{
int to;
int next;
} edge[N]; int seek(int ss)
{
int mid;
int head=ss;
while(ss!=father[ss])
ss=father[ss]; while(head!=ss)
{
mid=father[head];
father[head]=ss;
head=mid;
}
return ss;
} void join(int xx,int yy)
{
int one=seek(xx);
int two=seek(yy);
if(one!=two)
father[two]=one; //注意把谁变成谁的上级
} void add(int x,int y)
{
edge[cnt].to=y;
edge[cnt].next=head[x];
head[x]=cnt++;
} void init()
{
int i,p,j;
int x,y;
cnt=;
memset(head,-,sizeof(head));
memset(is_root,,sizeof(is_root));
memset(vis,,sizeof(vis));
scanf("%d",&n);
for(i=; i<=n; i++)
father[i]=i;
for(i=; i<n; i++)
{
scanf("%d%d",&x,&y);
add(x,y);
is_root[y]=;
}
for(i=; i<=n; i++)
if(is_root[i]==)
root=i;
} void LCA(int u)
{
int i,p,j;
for(i=head[u]; i!=-; i=edge[i].next)
{
int v=edge[i].to;
LCA(v);
join(u,v);
vis[v]=;
} if(u==a&&vis[b]==)
ans=seek(b);
if(u==b&&vis[a]==)
ans=seek(a); return ;
} void solve()
{
scanf("%d%d",&a,&b);
LCA(root);
} int main()
{
int t,m,i,p,j;
scanf("%d",&t);
for(i=; i<=t; i++)
{
init();
solve(); printf("%d\n",ans);
}
return ;
}
POJ - 1330 Nearest Common Ancestors 最近公共祖先+链式前向星 模板题的更多相关文章
- POJ 1330 Nearest Common Ancestors (最近公共祖先LCA + 详解博客)
LCA问题的tarjan解法模板 LCA问题 详细 1.二叉搜索树上找两个节点LCA public int query(Node t, Node u, Node v) { int left = u.v ...
- 【POJ】1330 Nearest Common Ancestors ——最近公共祖先(LCA)
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 18136 Accept ...
- poj 1330 Nearest Common Ancestors 求最近祖先节点
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 37386 Accept ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- POJ - 1330 Nearest Common Ancestors(基础LCA)
POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %l ...
- POJ 1330 Nearest Common Ancestors 倍增算法的LCA
POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...
- POJ.1330 Nearest Common Ancestors (LCA 倍增)
POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...
- LCA POJ 1330 Nearest Common Ancestors
POJ 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24209 ...
- POJ 1330 Nearest Common Ancestors(lca)
POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...
随机推荐
- 补发9.26“天天向上”团队Scrum站立会议
组长:王森 组员:张金生 张政 栾骄阳 时间:2016.09.26 地点:612寝 组员 已完成 未完成 王森 可行性分析 找出设计亮点 张金生 寻找UI素材 设计用户操作 张政 搭建环境 基础逻辑框 ...
- log4j配置独立日志方法
不使用类,而是使用loggerName来创建日志: #json是用java代码创建logger时用name,而不是jsonlog,注意,不需要在rootLogger中再配置,否则其它无关信息也将输出到 ...
- sphinx配置 + php
1. 为什么要使用Sphinx 假设你现在运营着一个论坛,论坛数据已经超过100W,很多用户都反映论坛搜索的速度非常慢,那么这时你就可以考虑使用Sphinx了(当然其他的全文检索程序或方法也 ...
- php过滤字符串
addslashes(); stripslashes(); //对数据库教程操作时,转义特殊字符 定义:addslashes() 函数在指定的预定义字符前添加反斜杠. 语法:addslashes(st ...
- Django之contenttypes的应用
Django contenttypes 应用 简介 contenttypes 是Django内置的一个应用,可以追踪项目中所有app和model的对应关系,并记录在ContentType表中. 每当我 ...
- shell 一些符号的使用
给你个全的,你在Linux环境下多试下就明白了:$0 这个程式的执行名字$n 这个程式的第n个参数值,n=1..9$* 这个程式的所有参数,此选项参数可超过9个.$# 这个程式的参数个数$$ 这个程式 ...
- vue render function
vue render function https://vuejs.org/v2/guide/render-function.html { // Same API as `v-bind:class`, ...
- java map的 keyset()方法
- DjangoORM创建表结构以及生成数据库结构
1. ORM的两种 DB first: 创建表结构--根据表结构生成类-----根据类来操作数据库 Code first: 先写代码------再写类----执行命令(一个类生成一个表)当前主流的用法 ...
- 【比赛】HNOI2018 转盘
通过这题,我发现了我最大的缺陷,就是题目中重要的性质发现不了,所以导致后期根本做不了.还是要多做题,培养思维 对于这道题,来发现性质吧 对于每一条路线,因为它有用的就是最终的时刻,所以我们都可以把它变 ...