Map函数 
map()函数接收两个参数,一个是函数,一个是序列,map将传入的函数依次作用到序列的每个元素,并把结果作为新的list返回。 
举例说明 
比如我们有一个函数f(x)=x2,要把这个函数作用在一个list [1, 2, 3, 4, 5, 6, 7, 8, 9]上,就可以用map()实现如下: 
 
现在,我们用Python代码实现:

>>> def f(x):
... return x * x
...
>>> map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
[1, 4, 9, 16, 25, 36, 49, 64, 81]

map()传入的第一个参数是f,即函数对象本身。

你可能会想,不需要map()函数,写一个循环,也可以计算出结果:

L = []
for n in [1, 2, 3, 4, 5, 6, 7, 8, 9]:
L.append(f(n))print L

的确可以,但是,从上面的循环代码,能一眼看明白“把f(x)作用在list的每一个元素并把结果生成一个新的list”吗? 
所以,map()作为高阶函数,事实上它把运算规则抽象了,因此,我们不但可以计算简单的f(x)=x2,还可以计算任意复杂的函数,比如,把这个list所有数字转为字符串:

只需要一行代码。

>>> map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9])
['', '', '', '', '', '', '', '', '']

Reduce函数 
reduce把一个函数作用在一个序列[x1, x2, x3…]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:

reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)

比方说对一个序列求和,就可以用reduce实现:

>>> def add(x, y):
... return x + y
...
>>> reduce(add, [1, 3, 5, 7, 9])
25

当然求和运算可以直接用Python内建函数sum(),没必要动用reduce。 
但是如果要把序列[1, 3, 5, 7, 9]变换成整数13579,reduce就可以派上用场:

>>> def fn(x, y):
... return x * 10 + y
...
>>> reduce(fn, [1, 3, 5, 7, 9])
13579

这个例子本身没多大用处,但是,如果考虑到字符串str也是一个序列,对上面的例子稍加改动,配合map(),我们就可以写出把str转换为int的函数:

>>> def fn(x, y):
... return x * 10 + y
...
>>> def char2num(s):
... return {'': 0, '': 1, '': 2, '': 3, '': 4, '': 5, '': 6, '': 7, '': 8, '': 9}[s]
...
>>> reduce(fn, map(char2num, ''))
13579

整理成一个str2int的函数就是:

def str2int(s):

    def fn(x, y):
return x * 10 + y def char2num(s):
return {'': 0, '': 1, '': 2, '': 3, '': 4, '': 5, '': 6, '': 7, '': 8, '': 9}[s] return reduce(fn, map(char2num, s))

还可以用lambda函数进一步简化成:

def char2num(s):
return {'': 0, '': 1, '': 2, '': 3, '': 4, '': 5, '': 6, '': 7, '': 8, '': 9}[s] def str2int(s):
return reduce(lambda x,y: x*10+y, map(char2num, s))

也就是说,假设Python没有提供int()函数,你完全可以自己写一个把字符串转化为整数的函数,而且只需要几行代码!

Filter函数 
Python内建的filter()函数用于过滤序列

和map()类似,filter()也接收一个函数和一个序列。

和map()不同的时,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。

True保留,False丢弃 
例如,在一个list中,删掉偶数,只保留奇数,可以这么写:

def is_odd(n):
return n % 2 == 1 filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]) # 结果: [1, 5, 9, 15]

把一个序列中的空字符串删掉,可以这么写:

def not_empty(s):
return s and s.strip() filter(not_empty, ['A', '', 'B', None, 'C', ' ']) # 结果: ['A', 'B', 'C']

可见用filter()这个高阶函数,关键在于正确实现一个“筛选”函数。

Python高阶函数(Map、Reduce、Filter)和lambda函数一起使用 ,三剑客的更多相关文章

  1. Python学习 Day 5 高阶函数 map/reduce filter sorter 返回函数 匿名函数 装饰器 偏函数

    高阶函数Higher-orderfunction 变量可以指向函数 >>> abs #abs(-10)是函数调用,而abs是函数本身 <built-in function ab ...

  2. python--函数式编程 (高阶函数(map , reduce ,filter,sorted),匿名函数(lambda))

    1.1函数式编程 面向过程编程:我们通过把大段代码拆成函数,通过一层一层的函数,可以把复杂的任务分解成简单的任务,这种一步一步的分解可以称之为面向过程的程序设计.函数就是面向过程的程序设计的基本单元. ...

  3. [python基础知识]python内置函数map/reduce/filter

    python内置函数map/reduce/filter 这三个函数用的顺手了,很cool. filter()函数:filter函数相当于过滤,调用一个bool_func(只返回bool类型数据的方法) ...

  4. Python 函数式编程 & Python中的高阶函数map reduce filter 和sorted

    1. 函数式编程 1)概念 函数式编程是一种编程模型,他将计算机运算看做是数学中函数的计算,并且避免了状态以及变量的概念.wiki 我们知道,对象是面向对象的第一型,那么函数式编程也是一样,函数是函数 ...

  5. Python进阶:函数式编程(高阶函数,map,reduce,filter,sorted,返回函数,匿名函数,偏函数)...啊啊啊

    函数式编程 函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计.函数就是面向过程的程序设计 ...

  6. (转)Python进阶:函数式编程(高阶函数,map,reduce,filter,sorted,返回函数,匿名函数,偏函数)

    原文:https://www.cnblogs.com/chenwolong/p/reduce.html 函数式编程 函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数 ...

  7. JavaScript高阶函数 map reduce filter sort

    本文是笔者在看廖雪峰老师JavaScript教程时的个人总结 高阶函数            一个函数就接收另一个函数作为参数,这种函数就称之为高阶函数          1.高阶函数之map:   ...

  8. 函数式编程 高阶函数 map&reduce filter sorted

    函数式编程 纯函数:没有变量的函数 对于纯函数而言:只要输入确定,那么输出就是确定的.纯函数是没有副作用的. 函数式编程:允许把函数本身作为参数传入另一个函数,还允许返回一个函数 高阶函数:一个函数的 ...

  9. python内置函数map/reduce/filter

    python有几个内置的函数很有意 思:map/filter/reduce,都是对一个集合进行处理,filter很容易理解用于过滤,map用于映射,reduce用于归并. 是python列表方法的三架 ...

  10. Python函数式编程,map/reduce,filter和sorted

    什么是函数式编程? 与面向对象编程(Object-oriented programming)和过程式编程(Procedural programming)并列的编程范式. 最主要的特征是,函数是第一等公 ...

随机推荐

  1. spring-boot 打包成 war包发布

    1.用maven打包成war包 2.将war包用zip方式打开,删除里面的tomcat-embed相关的4个包,删除spring-boot-tomcat包 3.将删除了tomcat相关嵌入包后的war ...

  2. 160422、Highcharts后台获取数据

    而我这次做的是趋势图,涉及到动态刷新,做的过程还是花了一番功夫的,也补充和巩固了一点js的知识,为了纪念,把过程记录一下: 首先,是引入HIghcharts绘图相关的js文件和jQuery.js. 接 ...

  3. 制作item和category的mvc视图总结

    View层index.phg 代码: <?php use yii\helpers\Html; use yii\grid\GridView; use yii\widgets\Pjax; use f ...

  4. transform的妙用---实现div不定宽高垂直水平居中

    transform的兼容性 transform的兼容性还是比较乐观的.IE9以下不兼容,IE9支持代替的-ms-transform属性不过只支持2D转换. 谷歌和Safari支持代替的-webkit- ...

  5. android系统权限SET_PREFERRED_APPLICATIONS怎么获取

    最近自己写个demo,需要用到SET_PREFERRED_APPLICATIONS权限 在网上找了半天,大概有两种方式: 1. 将手机root后,把apk强行push到system/app目录下,重启 ...

  6. Storm-源码分析- Multimethods使用例子

    1. storm通过multimethods来区分local和distributed模式 当调用launch-worker的时候, clojure会自动根据defmulti里面定义的fn来判断是调用哪 ...

  7. MapReduce辅助排序

    需求:订单数据 求出每个订单中最贵的商品? 订单id正序,成交金额倒序. 结果文件三个,每个结果文件只要一条数据. 1.Mapper类 package com.css.order.mr; import ...

  8. Wow! Such Doge!---hdu4847(字符串水题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4847 题意就是求给出的文章中共有多少个doge,不区分大小写直接用strstr做就可以了: #incl ...

  9. Design Patterns Example Code (in C++)

    Overview Design patterns are ways to reuse design solutions that other software developers have crea ...

  10. 网络爬虫之scrapy框架详解

    twisted介绍 Twisted是用Python实现的基于事件驱动的网络引擎框架,scrapy正是依赖于twisted, 它是基于事件循环的异步非阻塞网络框架,可以实现爬虫的并发. twisted是 ...