Description

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤
XN). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road
i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively:
N, M, and X

Lines 2.. M+1: Line i+1 describes road i with three space-separated integers:
Ai, Bi, and Ti. The described road runs from farm
Ai to farm Bi, requiring Ti time units to traverse.

Output

Line 1: One integer: the maximum of time any one cow must walk.

Sample Input

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

Sample Output

10

Hint

Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

题解:还是正向建图和逆向建图。就是求往返路程中最大的一条。

djistra:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue> using namespace std; const int INF= 0x3fffffff; int map[2][1003][1003];
bool visited[1003];
int d[1003];
int ans[1003]; int max(int a,int b)
{
return a > b ? a : b;
} void prim(int n,int s,int flag)
{
memset(visited,false,sizeof(visited));
for(int i = 1;i <= n;i++)
{
d[i] = map[flag][s][i];
//cout<<d[i]<<endl;
}
visited[s] = true;
for(int i = 1;i < n;i++)
{
int min = INF;
int k;
for(int j = 1;j <= n;j++)
{
if(!visited[j] && min > d[j])
{
min = d[j];
k = j;
}
}
if(min == INF)
{
break;
}
visited[k] = true;
for(int j = 1;j <= n;j++)
{
if(!visited[j] && d[j] > d[k] + map[flag][k][j])
{
d[j] = d[k] + map[flag][k][j];
}
}
}
} int main()
{
int n,m,st;
while(scanf("%d%d%d",&n,&m,&st) != EOF)
{
for(int i = 1;i <= n;i++)
{
for(int j = 1;j <= n;j++)
{
if(i == j)
{
map[0][i][j] = 0;
map[1][i][j] = 0;
}
else
{
map[0][i][j] = INF;
map[1][i][j] = INF;
}
}
} int u,v,c;
for(int i = 0;i < m;i++)
{
scanf("%d%d%d",&u,&v,&c);
map[0][u][v] = c;
map[1][v][u] = c;
} prim(n,st,1);
for(int i = 1;i <= n;i++)
{
ans[i] = d[i];
}
prim(n,st,0);
int res = 0;
for(int i = 1;i <= n;i++)
{
ans[i] += d[i];
res = max(res,ans[i]);
} printf("%d\n",res);
} return 0;
}

Silver Cow Party的更多相关文章

  1. 图论 ---- spfa + 链式向前星 ---- poj 3268 : Silver Cow Party

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 12674   Accepted: 5651 ...

  2. Silver Cow Party(最短路,好题)

    Silver Cow Party Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Su ...

  3. POJ 3268 Silver Cow Party (双向dijkstra)

    题目链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  4. POJ 3268 Silver Cow Party (Dijkstra)

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13982   Accepted: 6307 ...

  5. poj 3268 Silver Cow Party

                                                                                                       S ...

  6. POJ 3268 Silver Cow Party (最短路dijkstra)

    Silver Cow Party 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/D Description One cow fr ...

  7. poj 3268 Silver Cow Party(最短路)

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17017   Accepted: 7767 ...

  8. TOJ1693(Silver Cow Party)

    Silver Cow Party   Time Limit(Common/Java):2000MS/20000MS     Memory Limit:65536KByte Total Submit: ...

  9. POJ3268 Silver Cow Party(dijkstra+矩阵转置)

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15156   Accepted: 6843 ...

  10. POJ 3268 Silver Cow Party (Dijkstra)

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions:28457   Accepted: 12928 ...

随机推荐

  1. H2数据库使用 详解

    H2最完整的资料下载地址: http://download.csdn.net/detail/yixiaoping/5956595 H2数据库使用   H2数据库介绍 常用的开源数据库:H2,Derby ...

  2. SEPIC 单端初级电感转换器 稳压器 -- Zeta 转换器

    single ended primary inductor converter 单端初级电感转换器 SEPIC(single ended primary inductor converter) 是一种 ...

  3. Digital Adjustment of DC-DC Converter Output Voltage 电阻选择

  4. 修改gnome-shell扩展“Applications Menu”的菜单区域宽度。

    sudo打开 /usr/share/gnome-shell/extensions/apps-menu@gnome-shell-extensions.gcampax.github.com/extensi ...

  5. mysql localhost登录和tcp/ip登录 strace

    http://blog.itpub.net/15480802/viewspace-1755100/

  6. .NET:字符集和编码学习总结

    背景 一直没有深入的学习字符集和编码的知识(现在也没有深入),今天查阅了一些资料,弄明白了一些事情,本文就简单记录一下. 字符集和编码 字符集是指一些符号组成的集合,编码是对指定字符集如何表示为字节的 ...

  7. .NET:为什么不能在子类或外部发布C#事件

    背景 一个朋友问了一个问题:“为什么不能在子类或外部发布C#事件?”,我说我不知道,要看看生产的IL代码,下面我们看看. 测试 代码 using System; using System.Collec ...

  8. 初步理解socket

    近期研究下socket,发现自己还是有非常多不明确的地方,索性沉下心来,从最基础開始学习,開始看起,如今对自己的学习做下小小总结,以便和大家分享,如有谬误,敬请指正. 原创文章,转载请注明出处:htt ...

  9. golang日期时间格式format()

    format()函数格式化字符串,用了语句time.now().format(“2015-11-12 12:00:00”),结果输出结果就是不能达到理想的结果,然后把golang文档中的”2006-0 ...

  10. linux开机启动的三种方式

    参考:www.cnblogs.com/gzggyy/archive/2012/08/07/2626574.html 一./etc/rc.local 其中的rc.local是在完成所有的系统初始化之后执 ...