【线段树】【CF19D】 Points
Description
在一个笛卡尔坐标系中,定义三种操作:
\(add(x,y)\),将点\((x,y)\)标记在坐标系上
\(find(x,y)\),查询点\((x,y)\)严格右上方中,横坐标最小的点。如果有多个,输出其中纵坐标最小的。没有则输出-1
\(remove(x,y)\),将点\((x,y)\)取消标记
Input
第一行是操作个数\(n\)。
下面\(n\)行,每行对应一个操作。
Output
每个查询操作输出一个答案。
Hint
\(n~\leq~10^5,|x|,|y|~\leq~10^9\)。数据保证合法。
Solution
\(x,y\)这么大,先给他离散化再说。
考虑一个笛卡尔坐标系上,对每个横坐标\(x\)任取一个\(y\)组成点\((x,y)\),是与一个数列\(A\)有一一对应关系的。即,点\((x,y)\)对应序列\(A_x=y\)。
考虑对于一次查询,一列能做为答案的必要条件是这一列上\(y\)轴最大的点大于被查询的点的纵坐标。于是就想到将每个\(x\)对应的最大的\(y\)写入序列。于是每次查询时在序列上查询大于\(x\)的后缀上第一个大于\(y\)的位置的下标。这个显然可以用线段树搞定。考虑剩下的\(y\)怎么记录。使用线段树可以查询出应该被选择的横坐标。则纵坐标就是这一列上大于\(y\)的第一个数。于是对于每一列开一个\(set\),维护这一列上所有的\(y\),查询时直接upper_bound即可。
考虑线段树的写法。对于线段树的一个区间,维护这段区间中最大值的下标是多少。查询时,先递归查询左区间,如果左区间不合法则递归查询右区间。一个区间不合法当且仅当他与被查询的区间无交或他的最大值小于被查询的值\(k\)。
考虑这么做的复杂度:因为一个区间会被线段树划分成\(O(log(len))\)个线段。发现这些遍历这些线段是\(O(log)\)的,于是一次操作的复杂度是\(O(log)\)的。总复杂度\(O(nlogn)\)
Code
#include<set>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define rg register
#define ci const int
#define cl const long long
typedef long long int ll;
template <typename T>
inline void qr(T &x) {
rg char ch=getchar(),lst=' ';
while((ch > '9') || (ch < '0')) lst=ch,ch=getchar();
while((ch >= '0') && (ch <= '9')) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst == '-') x=-x;
}
namespace IO {
char buf[120];
}
template <typename T>
inline void qw(T x,const char aft,const bool pt) {
if(x < 0) {x=-x,putchar('-');}
rg int top=0;
do {IO::buf[++top]=x%10+'0';} while(x/=10);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
}
template <typename T>
inline T mmax(const T a,const T b) {return a > b ? a : b;}
template <typename T>
inline T mmin(const T a,const T b) {return a < b ? a : b;}
template <typename T>
inline T mabs(const T a) {return a < 0 ? -a : a;}
template <typename T>
inline void mswap(T &_a,T &_b) {
T _temp=_a;_a=_b;_b=_temp;
}
const int maxn = 200010;
const int maxt = 1600010;
struct M {
int opt,x,y;
};
M MU[maxn];
int n,tcnt,num;
int temp[maxt],CU[maxt];
std::set<int>ss[maxt];
struct Tree {
int v;
inline void update(const Tree &_ls,const Tree _rs) {
if(!(~(_ls.v))) this->v = _rs.v;
else if(!(~(_rs.v))) this->v = _ls.v;
else {
if(CU[_ls.v] >= CU[_rs.v]) this->v=_ls.v;
else this->v=_rs.v;
}
}
};
Tree tree[maxt];
void init_hash();
void change(ci,ci,ci,ci);
int ask(ci,ci,ci,ci,ci);
int main() {
qr(n);
for(rg int i=1;i<=n;++i) {
M &now=MU[i];
rg char ch=getchar();
while((ch > 'z') || (ch < 'a')) ch=getchar();
if(ch == 'a') now.opt=1;
else if(ch == 'r') now.opt=3;
else now.opt=2;
qr(now.x);qr(now.y);
temp[++tcnt]=now.x;temp[++tcnt]=now.y;
}
init_hash();
memset(tree,-1,sizeof tree);
for(rg int i=1;i<=n;++i) {
M &now=MU[i];
switch(now.opt) {
case 1: {
ss[now.x].insert(now.y);
if(now.y == *(--ss[now.x].end())) {CU[now.x]=now.y;change(1,num,1,MU[i].x);}
break;
}
case 2: {
int k=ask(1,num,1,now.x+1,now.y);
if(!(~k)) {puts("-1");break;}
qw(temp[k],' ',true);
std::set<int>::iterator zay = ss[k].upper_bound(now.y);
qw(temp[*zay],'\n',true);
break;
}
case 3: {
if(now.y == *(--ss[now.x].end())) {
ss[now.x].erase(now.y);
if(ss[now.x].empty()) CU[now.x]=0;
else CU[now.x]=*(--ss[now.x].end());
change(1,num,1,MU[i].x);
}
else ss[now.x].erase(now.y);
break;
}
}
}
return 0;
}
void init_hash() {
std::sort(temp+1,temp+1+tcnt);s
int *ed=std::unique(temp+1,temp+1+tcnt);
num=ed-temp-1;
for(rg int i=1;i<=n;++i) {
MU[i].x=std::lower_bound(temp+1,ed,MU[i].x)-temp;
MU[i].y=std::lower_bound(temp+1,ed,MU[i].y)-temp;
}
}
void change(ci l,ci r,ci p,ci aim) {
if(l > r) return;
if((l > aim) || (r < aim)) return;
if(l == r) {tree[p].v=l;return;}
int mid=(l+r)>>1,dp=p<<1,ddp=dp|1;
change(l,mid,dp,aim);change(mid+1,r,ddp,aim);
tree[p].update(tree[dp],tree[ddp]);
}
int ask(ci l,ci r,ci p,ci aim,ci v) {
if(l > r) return -1;
if(r < aim) return -1;
if(!(~(tree[p].v))) return -1;
if(CU[tree[p].v] <= v) return -1;
if(l == r) return tree[p].v;
int mid=(l+r)>>1,dp=p<<1,ddp=dp|1;
if(mid >= r) return ask(l,mid,dp,aim,v);
else if(mid < l) return ask(mid+1,r,ddp,aim,v);
else {
int _ans;
if(~(_ans=ask(l,mid,dp,aim,v))) return _ans;
else return ask(mid+1,r,ddp,aim,v);
}
}
Solution
一个笛卡尔坐标系中对于每一个横坐标\(x\)选择一个纵坐标\(y\)后,可以将之一一对应到一个下标为\(x\),值为\(y\)的线段上。利用这个性质可以将坐标问题改为序列修改问题使用数据结构处理。
【线段树】【CF19D】 Points的更多相关文章
- UVA10869 - Brownie Points II(线段树)
UVA10869 - Brownie Points II(线段树) 题目链接 题目大意:平面上有n个点,Stan和Ollie在玩游戏,游戏规则是:Stan先画一条竖直的线作为y轴,条件是必需要经过这个 ...
- Codeforces 1140F Extending Set of Points 线段树 + 按秩合并并查集 (看题解)
Extending Set of Points 我们能发现, 如果把x轴y轴看成点, 那么答案就是在各个连通块里面的x轴的个数乘以y轴的个数之和. 然后就变成了一个并查集的问题, 但是这个题目里面有撤 ...
- CodeForces 19D Points (线段树+set)
D. Points time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...
- [hdu4347]The Closest M Points(线段树形式kd-tree)
解题关键:kdtree模板题,距离某点最近的m个点. #include<cstdio> #include<cstring> #include<algorithm> ...
- CodeForces19D:Points(线段树+set(动态查找每个点右上方的点))
Pete and Bob invented a new interesting game. Bob takes a sheet of paper and locates a Cartesian coo ...
- Codeforces Beta Round #19D(Points)线段树
D. Points time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...
- 2019牛客多校第一场 I Points Division(动态规划+线段树)
2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...
- CodeForces 19D Points(线段树+map)
开始想不通,后来看网上说是set,就有一个想法是对每个x建一个set...然后又想直接建立两重的set就好,最后发现不行,自己想多了... 题意是给你三种操作:add (x y) 平面添加(x y) ...
- CF 19D - Points 线段树套平衡树
题目在这: 给出三种操作: 1.增加点(x,y) 2.删除点(x,y) 3.询问在点(x,y)右上方的点,如果有相同,输出最左边的,如果还有相同,输出最低的那个点 分析: 线段树套平衡树. 我们先离散 ...
随机推荐
- Linux 优化详解
一.引子 系统优化是一项复杂.繁琐.长期的工作,优化前需要监测.采集.测试.评估,优化后也需要测试.采集.评估.监测,而且是一个长期和持续的过程,不是说现在又花了.测试了,以后就可以一劳永逸,而不是说 ...
- 4星|《财经》2018年第15期:电动飞机、无人小飞机、AI无人机
<财经>2018年第15期 总第532期 旬刊 本期主题是AI.有多篇国内AI行业的比较深入的调查报告,比较有意思的有:电动飞机.无人小飞机.AI无人机.欧盟通用数据保护条例.Amazon ...
- java之接口开发-初级篇-http和https
http协议util address(url地址),str(数据参数) private static HttpMethod getPostJsonMethodInRequestBody(String ...
- python3【基础】-字符串 常用的方法
字符串一个最重要的特性就是不可修改. name.capitalize() 首字母大写 name.casefold() 大写全部变小写 name.center(50,"-") 输出 ...
- 最全的NB-IoT芯片厂商、模组厂商信息
NB-IoT作为LPWAN(低功耗广域网)的新兴技术,因为具有低功耗.低成本.广覆盖.海量节点等优势,并且在授权频段可以与2G.3G无缝连接而被运营商所青睐且接受.特别是到了2017年,据统计全球有5 ...
- PHP中定义常量
PHP中定义常量的方式如下: define(常量名,常量值); //定义常量PUBLISHER define('PUBLISHER', "O'Reilly & Associates& ...
- ASP.NET 文档
标题:ASP.NET 文档 地址:https://docs.microsoft.com/zh-cn/aspnet/index#pivot=core&panel=core_overview 标题 ...
- 如何防止app接口被别人调用
app开发的时候,如何保护app的接口呢? 用https是我想到的办法,但是不知道怎么实现,所以就考虑用token,虽然不是绝对有效,但是能防止一般的用户来攻击,高手非要攻击,只能报警了吧. toke ...
- 如何改变placeholder的颜色
:-moz-placeholder { /* Mozilla Firefox 4 to 18 */ color: #f00; } ::-moz-placeholder { /* Mozilla Fir ...
- Struts2(四)
以下内容是基于导入struts2-2.3.32.jar包来讲的 1.struts2配置文件加载的顺序 struts2的StrutsPrepareAndExecuteFilter拦截器中对Dispatc ...