传送门

Description

在一个笛卡尔坐标系中,定义三种操作:

\(add(x,y)\),将点\((x,y)\)标记在坐标系上

\(find(x,y)\),查询点\((x,y)\)严格右上方中,横坐标最小的点。如果有多个,输出其中纵坐标最小的。没有则输出-1

\(remove(x,y)\),将点\((x,y)\)取消标记

Input

第一行是操作个数\(n\)。

下面\(n\)行,每行对应一个操作。

Output

每个查询操作输出一个答案。

Hint

\(n~\leq~10^5,|x|,|y|~\leq~10^9\)。数据保证合法。

Solution

\(x,y\)这么大,先给他离散化再说。

考虑一个笛卡尔坐标系上,对每个横坐标\(x\)任取一个\(y\)组成点\((x,y)\),是与一个数列\(A\)有一一对应关系的。即,点\((x,y)\)对应序列\(A_x=y\)。

考虑对于一次查询,一列能做为答案的必要条件是这一列上\(y\)轴最大的点大于被查询的点的纵坐标。于是就想到将每个\(x\)对应的最大的\(y\)写入序列。于是每次查询时在序列上查询大于\(x\)的后缀上第一个大于\(y\)的位置的下标。这个显然可以用线段树搞定。考虑剩下的\(y\)怎么记录。使用线段树可以查询出应该被选择的横坐标。则纵坐标就是这一列上大于\(y\)的第一个数。于是对于每一列开一个\(set\),维护这一列上所有的\(y\),查询时直接upper_bound即可。

考虑线段树的写法。对于线段树的一个区间,维护这段区间中最大值的下标是多少。查询时,先递归查询左区间,如果左区间不合法则递归查询右区间。一个区间不合法当且仅当他与被查询的区间无交或他的最大值小于被查询的值\(k\)。

考虑这么做的复杂度:因为一个区间会被线段树划分成\(O(log(len))\)个线段。发现这些遍历这些线段是\(O(log)\)的,于是一次操作的复杂度是\(O(log)\)的。总复杂度\(O(nlogn)\)

Code

#include<set>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define rg register
#define ci const int
#define cl const long long typedef long long int ll; template <typename T>
inline void qr(T &x) {
rg char ch=getchar(),lst=' ';
while((ch > '9') || (ch < '0')) lst=ch,ch=getchar();
while((ch >= '0') && (ch <= '9')) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst == '-') x=-x;
} namespace IO {
char buf[120];
} template <typename T>
inline void qw(T x,const char aft,const bool pt) {
if(x < 0) {x=-x,putchar('-');}
rg int top=0;
do {IO::buf[++top]=x%10+'0';} while(x/=10);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} template <typename T>
inline T mmax(const T a,const T b) {return a > b ? a : b;}
template <typename T>
inline T mmin(const T a,const T b) {return a < b ? a : b;}
template <typename T>
inline T mabs(const T a) {return a < 0 ? -a : a;} template <typename T>
inline void mswap(T &_a,T &_b) {
T _temp=_a;_a=_b;_b=_temp;
} const int maxn = 200010;
const int maxt = 1600010; struct M {
int opt,x,y;
};
M MU[maxn]; int n,tcnt,num;
int temp[maxt],CU[maxt];
std::set<int>ss[maxt]; struct Tree {
int v;
inline void update(const Tree &_ls,const Tree _rs) {
if(!(~(_ls.v))) this->v = _rs.v;
else if(!(~(_rs.v))) this->v = _ls.v;
else {
if(CU[_ls.v] >= CU[_rs.v]) this->v=_ls.v;
else this->v=_rs.v;
}
}
};
Tree tree[maxt]; void init_hash();
void change(ci,ci,ci,ci);
int ask(ci,ci,ci,ci,ci); int main() {
qr(n);
for(rg int i=1;i<=n;++i) {
M &now=MU[i];
rg char ch=getchar();
while((ch > 'z') || (ch < 'a')) ch=getchar();
if(ch == 'a') now.opt=1;
else if(ch == 'r') now.opt=3;
else now.opt=2;
qr(now.x);qr(now.y);
temp[++tcnt]=now.x;temp[++tcnt]=now.y;
}
init_hash();
memset(tree,-1,sizeof tree);
for(rg int i=1;i<=n;++i) {
M &now=MU[i];
switch(now.opt) {
case 1: {
ss[now.x].insert(now.y);
if(now.y == *(--ss[now.x].end())) {CU[now.x]=now.y;change(1,num,1,MU[i].x);}
break;
}
case 2: {
int k=ask(1,num,1,now.x+1,now.y);
if(!(~k)) {puts("-1");break;}
qw(temp[k],' ',true);
std::set<int>::iterator zay = ss[k].upper_bound(now.y);
qw(temp[*zay],'\n',true);
break;
}
case 3: {
if(now.y == *(--ss[now.x].end())) {
ss[now.x].erase(now.y);
if(ss[now.x].empty()) CU[now.x]=0;
else CU[now.x]=*(--ss[now.x].end());
change(1,num,1,MU[i].x);
}
else ss[now.x].erase(now.y);
break;
}
}
}
return 0;
} void init_hash() {
std::sort(temp+1,temp+1+tcnt);s
int *ed=std::unique(temp+1,temp+1+tcnt);
num=ed-temp-1;
for(rg int i=1;i<=n;++i) {
MU[i].x=std::lower_bound(temp+1,ed,MU[i].x)-temp;
MU[i].y=std::lower_bound(temp+1,ed,MU[i].y)-temp;
}
} void change(ci l,ci r,ci p,ci aim) {
if(l > r) return;
if((l > aim) || (r < aim)) return;
if(l == r) {tree[p].v=l;return;}
int mid=(l+r)>>1,dp=p<<1,ddp=dp|1;
change(l,mid,dp,aim);change(mid+1,r,ddp,aim);
tree[p].update(tree[dp],tree[ddp]);
} int ask(ci l,ci r,ci p,ci aim,ci v) {
if(l > r) return -1;
if(r < aim) return -1;
if(!(~(tree[p].v))) return -1;
if(CU[tree[p].v] <= v) return -1;
if(l == r) return tree[p].v;
int mid=(l+r)>>1,dp=p<<1,ddp=dp|1;
if(mid >= r) return ask(l,mid,dp,aim,v);
else if(mid < l) return ask(mid+1,r,ddp,aim,v);
else {
int _ans;
if(~(_ans=ask(l,mid,dp,aim,v))) return _ans;
else return ask(mid+1,r,ddp,aim,v);
}
}

Solution

一个笛卡尔坐标系中对于每一个横坐标\(x\)选择一个纵坐标\(y\)后,可以将之一一对应到一个下标为\(x\),值为\(y\)的线段上。利用这个性质可以将坐标问题改为序列修改问题使用数据结构处理。

【线段树】【CF19D】 Points的更多相关文章

  1. UVA10869 - Brownie Points II(线段树)

    UVA10869 - Brownie Points II(线段树) 题目链接 题目大意:平面上有n个点,Stan和Ollie在玩游戏,游戏规则是:Stan先画一条竖直的线作为y轴,条件是必需要经过这个 ...

  2. Codeforces 1140F Extending Set of Points 线段树 + 按秩合并并查集 (看题解)

    Extending Set of Points 我们能发现, 如果把x轴y轴看成点, 那么答案就是在各个连通块里面的x轴的个数乘以y轴的个数之和. 然后就变成了一个并查集的问题, 但是这个题目里面有撤 ...

  3. CodeForces 19D Points (线段树+set)

    D. Points time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...

  4. [hdu4347]The Closest M Points(线段树形式kd-tree)

    解题关键:kdtree模板题,距离某点最近的m个点. #include<cstdio> #include<cstring> #include<algorithm> ...

  5. CodeForces19D:Points(线段树+set(动态查找每个点右上方的点))

    Pete and Bob invented a new interesting game. Bob takes a sheet of paper and locates a Cartesian coo ...

  6. Codeforces Beta Round #19D(Points)线段树

    D. Points time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...

  7. 2019牛客多校第一场 I Points Division(动态规划+线段树)

    2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...

  8. CodeForces 19D Points(线段树+map)

    开始想不通,后来看网上说是set,就有一个想法是对每个x建一个set...然后又想直接建立两重的set就好,最后发现不行,自己想多了...  题意是给你三种操作:add (x y) 平面添加(x y) ...

  9. CF 19D - Points 线段树套平衡树

    题目在这: 给出三种操作: 1.增加点(x,y) 2.删除点(x,y) 3.询问在点(x,y)右上方的点,如果有相同,输出最左边的,如果还有相同,输出最低的那个点 分析: 线段树套平衡树. 我们先离散 ...

随机推荐

  1. const与readonly常量

    const与readonly常量 const与readonly都是用来定义常量,但是它们有什么区别呢? 下面我们来简要的说明一下: const修饰的常量是编译时常量,如:public const St ...

  2. Dubbo使用心得2

  3. 直线石子合并(区间DP)

    石子合并 时间限制:1000 ms  |  内存限制:65535 KB 描述有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费 ...

  4. Switch Game :因子数

    A - Switch Game Problem Description There are many lamps in a line. All of them are off at first. A ...

  5. LibLas学习笔记

    LibLas学习笔记 las  什么是Las格式 LAS文件格式是数据用户之间交换三维点云数据的公共文件格式. 虽然这种格式主要用于交换激光雷达点云数据,但是它支持交换任何三维的x.y.z 数组. 这 ...

  6. We are writing to let you know we have removed your selling privileges

     Hello, We are writing to let you know we have removed your selling privileges, canceled your listin ...

  7. 福大软工1816:Beta总结

    第三视角Beta答辩总结 博客链接以及团队信息 组长博客链接 成员信息(按拼音排序) 姓名 学号 备注 张扬 031602345 组长 陈加伟 031602204 郭俊彦 031602213 洪泽波 ...

  8. 关于C语言的问卷调查!!!!!!!!!!

    1.我对自己的未来是现在通过大学这一平台逐渐接触社会,通过大学的这段时间学习C语言等计算机语言技术,有一技之长在手,并且通过大学时间丰富自己的业余生活,加强自己的人脉关系,为未来在事业上的发展做准备! ...

  9. 01_Java基础_第1天(Java概述、环境变量、注释、关键字、标识符、常量)_讲义

    今日内容介绍 1.Java开发环境搭建 2.HelloWorld案例 3.注释.关键字.标识符 4.数据(数据类型.常量) 01java语言概述 * A: java语言概述 * a: Java是sun ...

  10. 解决CentOS安装redis局域网内无法访问的问题

    redis4.0版本安装教程晚上非常多,随便贴出来一个:http://www.cnblogs.com/web424/p/6796993.html 安装完成后,在局域网内发现无法访问到redis.cen ...