设不定方程:x^2+y^2=z^2
若正整数三元组(x,y,z)满足上述方程,则称为毕达哥拉斯三元组。
若gcd(x,y,z)=1,则称为本原的毕达哥拉斯三元组。

定理:
正整数x,y,z构成一个本原的毕达哥拉斯三元组且y为偶数,当且仅当存在互素的正整数m,n(m>n),其中m,n的奇偶性不同,
并且满足
  x=m^2-n^2,y=2*m*n, z=m^2+n^2

本题目让你求的是,在n范围内(x,y,z<=n)本原的毕达哥拉斯三元组的个数,以及n以内且毕达哥拉斯三元组不涉及的数的个数。

举个样例:
25
本原的三元组有:(3,4,5),(7,24,25),(5,12,13),(8,15,17),即第一个要输出的为4
所有的毕达哥拉斯三元组,除了上述4个外,还有:(6,8,10),(9,12,15),(12,16,20),(15,20,25)
不包含在这些三元组里面的<=n的数有9个。

思路:很显然,依据前面给出的定理,只要枚举一下m,n(m,n<=sqrt(n)),然后将三元组乘以i(保证i*z在范围内即可),
就可以求出所有的毕达哥拉斯三元组。

#include <iostream>
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <math.h> using namespace std;
const int maxn=;
int n;
int vis[+];
int gcd(int a,int b){
return b==?a:gcd(b,a%b);
}
int main()
{
while(scanf("%d",&n)!=EOF){
memset(vis,,sizeof(vis));
int m=sqrt((double)n);
//printf("%d\n",m);
int ans=; //本原的毕达哥拉斯三元组的个数
int x,y,z;
int a,b,d;
for(int i=;i<=m;i+=){
for(int j=;j<=m;j+=){ a=max(i,j);
b=min(i,j);
d=gcd(a,b);
//printf("a:%d b:%d\n",a,b);
if(d==){
x=a*a-b*b;
y=*a*b;
z=a*a+b*b;
for(int k=;k*z<=n;k++){
vis[x*k]=;
vis[y*k]=;
vis[z*k]=;
//printf("%d %d %d\n",x*k,y*k,z*k);
}
if(z<=n)
ans++; //还应该判断最初的z是否<=n,才能ans++
}
}
}
int cnt=;//所有毕达哥拉斯三元组不涉及的数的个数
for(int i=;i<=n;i++){
if(!vis[i])
cnt++;
}
printf("%d %d\n",ans,cnt);
}
return ;
}

POJ 1305 Fermat vs. Pythagoras (毕达哥拉斯三元组)的更多相关文章

  1. 数论(毕达哥拉斯定理):POJ 1305 Fermat vs. Pythagoras

    Fermat vs. Pythagoras Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 1493   Accepted: ...

  2. Fermat vs. Pythagoras POJ - 1305 (数论之勾股数组(毕达哥拉斯三元组))

    题意:(a, b, c)为a2+b2=c2的一个解,那么求gcd(a, b, c)=1的组数,并且a<b<c<=n,和不为解中所含数字的个数,比如在n等于10时,为1, 2, 7,9 ...

  3. UVa 106 - Fermat vs Pythagoras(数论题目)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  4. 毕达哥拉斯三元组(勾股数组)poj1305

    本原毕达哥拉斯三元组是由三个正整数x,y,z组成,且gcd(x,y,z)=1,x*x+y*y=z*z 对于所有的本原毕达哥拉斯三元组(a,b,c) (a*a+b*b=c*c,a与b必定奇偶互异,且c为 ...

  5. FZU1669 Right-angled Triangle【毕达哥拉斯三元组】

    主题链接: pid=1669">http://acm.fzu.edu.cn/problem.php?pid=1669 题目大意: 求满足以a.b为直角边,c为斜边,而且满足a + b ...

  6. poj1305 Fermat vs. Pythagoras(勾股数)

    题目传送门 题意: 设不定方程:x^2+y^2=z^2若正整数三元组(x,y,z)满足上述方程,则称为毕达哥拉斯三元组.若gcd(x,y,z)=1,则称为本原的毕达哥拉斯三元组. 定理:正整数x,y, ...

  7. Python练习题 037:Project Euler 009:毕达哥拉斯三元组之乘积

    本题来自 Project Euler 第9题:https://projecteuler.net/problem=9 # Project Euler: Problem 9: Special Pythag ...

  8. UVA106 - Fermat vs. Pythagoras

    假设x为奇数,y为偶数,则z为奇数,2z与2x的最大公因数为2,2z和2x可分别写作 2z = (z + x) + (z - x) 2x = (z + x) - (z - x) 那么跟据最大公因数性质 ...

  9. POJ 1305

    毕达哥斯三元组的模板题 练习练习 #include<iostream> #include<cstring> #include<cstdio> #include< ...

随机推荐

  1. PagerAdapter的notifyDataSetChanged无效解决方法

    在Adapter中复写该方法: @Override public int getItemPosition(Object object) { return POSITION_NONE; } 即可~~

  2. 算法系列8《Base64》

    Base64是网络上最常见的用于传输8Bit字节代码的编码方式之一,Base64编码可用于在HTTP环境下传递较长的标识信息.在其他应用程序中,也常常需要把二进制数据编码为适合放在URL(包括隐藏表单 ...

  3. Python数据类型-----数字&字符串

    Python数字类型 int类型表示的范围:-2147483648至2147483648之间,超出这个范围的数字即视为long(长整形) 在Python中不需要事先声明数据类型,它是根据具体的赋值来进 ...

  4. jQuery的筛选选择器

    基本筛选选择器 很多时候我们不能直接通过基本选择器与层级选择器找到我们想要的元素,为此jQuery提供了一系列的筛选选择器用来更快捷的找到所需的DOM元素.筛选选择器很多都不是CSS的规范,而是jQu ...

  5. MySQL 设置允许远程登录

    1.修改数据表 可能是你的帐号不允许从远程登陆,只能在localhost.这个时候只要在 localhost 的那台电脑,登入MySQL后,更改 "MySQL" 数据库里的 &qu ...

  6. hdu 4417 Super Mario/树套树

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4417 题意很简单,给定一个序列求一个区间 [L, R,]中小于等于H的元素的个数. 好像函数式线段树可 ...

  7. 【javascript】html5中使用canvas编写头像上传截取功能

    [javascript]html5中使用canvas编写头像上传截取功能 本人对canvas很是喜欢,于是想仿照新浪微博头像上传功能(前端使用canvas) 本程序目前在谷歌浏览器和火狐浏览器测试可用 ...

  8. JS跨域方法及原理

        JS跨域分析判断 JS跨域:在不同域之间,JS进行数据传输或通信.比如ajax向不同的域请求数据.JS获取iframe中的页面中的值(iframe内外不同域) 只要协议.端口.域名有一个不同则 ...

  9. Linq To SQLite by CRUD

    1, 希望使用linqtoSQLite 来对数据库实现CRUD, 开发环境 VS2013, 1.1 在网上找到了 LINQ to DB T4 Models, 配置参考网址链接: http://www. ...

  10. [Linq Expression]练习自己写绑定

    源代码:TypeMapper.zip 背景 项目中,我们会经常用到各种赋值语句,比如把模型的属性赋值给UI,把视图模型的属性拷贝给Entity.如果模型属性太多,赋值也会变成苦力活.所以,框架编程的思 ...