POJ 3311 Hie with the Pie(Floyd+状态压缩DP)
题是看了这位的博客之后理解的,只不过我是又加了点简单的注释。
链接:http://blog.csdn.net/chinaczy/article/details/5890768
我还加了一些注释代码,对于新手的我,看起来可能更方便些吧,顺便说下快捷键
先选中要操作的行,ctrl+shift+c 是注释 ctrl+shift+x是解注释(cb的快捷键)
/*
Floyd + 状态压缩DP
题意是有N个城市(1~N)和一个PIZZA店(0),要求一条回路,从0出发,又回到0,而且距离最短
也就是TSP(旅行商)问题,首先不难想到用FLOYD先求出任意2点的距离dis[i][j]
接着枚举所有状态,用11位二进制表示10个城市和pizza店,1表示经过,0表示没有经过
定义状态DP(S,i)表示在S状态下,到达城市I的最优值
接着状态转移方程:DP(S,i) = min{DP(S^(1<<i-1),k) + dis[k][j],DP(S,i)},其中S^(1<<i-1)表示未到达城市i的所有状态,1<=k<=n
对于全1的状态,即S = (1<<n)-1则表示经过所有城市的状态,最终还需要回到PIZZA店0
那么最终答案就是min{DP(S,i) + dis[i][0]} TSP是NP困难问题,所以地图必须要小,本题是10,所以也可以根据这个想到floyd,(时间复杂度n^3)和状压dp (用二进制存10位,且只有2个状态,走过,没走过)
*/
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define INF 100000000
using namespace std;
int dis[12][12];
int dp[1<<11][12];
int n,ans,_min;
int main()
{
#ifndef ONLINE_JUDGE
freopen("C:\\Users\\Zmy\\Desktop\\in.txt","r",stdin);//这应该修改下重定向的文件路径
// freopen("C:\\Users\\Zmy\\Desktop\\out.txt","w",stdout);
#endif // ONLINE_JUDGE
while(scanf("%d",&n) && n)
{
/**< 输入 */
for(int i = 0; i <= n; ++i)
for(int j = 0; j <= n; ++j)
scanf("%d",&dis[i][j]); // puts("before");
// for(int i = 0; i <= n; ++i)
// {
// for(int j = 0; j <= n; ++j)
// printf("%3d ",dis[i][j]);
// puts("");
// } /**< 这段用弗洛伊德求出了从i点到各个j点的最短距离 存在了dis中,即更新了dis */
for(int k = 0; k <= n; ++k)
for(int i = 0; i <= n; ++i)
for(int j = 0; j <= n; ++j)
if(dis[i][k] + dis[k][j] < dis[i][j])
dis[i][j] = dis[i][k] + dis[k][j]; // puts("after");
// for(int i = 0; i <= n; ++i)
// {
// for(int j = 0; j <= n; ++j)
// printf("%3d ",dis[i][j]);
// puts("");
// } for(int S = 0; S < (1<<n); ++S) //枚举所有状态,用位运算表示
for(int i = 1; i <= n; ++i)
{
if(S & (1<<(i-1)))//状态S中已经过城市i
{ /**< 注意:DP的边界是这句话,好牛逼!! */
if(S == (1<<(i-1))) dp[S][i] = dis[0][i];//状态S只经过城市I,最优解自然是从0出发到i的dis,这也是DP的边界 //如果S有经过多个城市
else
{
dp[S][i] = INF; //枚举不是城市I的其他城市
for(int j = 1; j <= n; ++j)
{
//在没经过城市I的状态中,寻找合适的中间点J使得距离更短,和FLOYD一样
if(S & (1<<(j-1)) && j != i)
dp[S][i] = min(dp[S^(1<<(i-1))][j] + dis[j][i],dp[S][i]);
} }
}
}
ans = dp[(1<<n)-1][1] + dis[1][0];
for(int i = 2; i <= n; ++i)
if(dp[(1<<n)-1][i] + dis[i][0] < ans)
ans = dp[(1<<n)-1][i] + dis[i][0];
printf("%d\n",ans);
}
return 0;
}
POJ 3311 Hie with the Pie(Floyd+状态压缩DP)的更多相关文章
- poj 3311 Hie with the Pie(状态压缩dp)
Description The Pizazz Pizzeria prides itself or more (up to ) orders to be processed before he star ...
- [poj3311]Hie with the Pie(Floyd+状态压缩DP)
题意:tsp问题,经过图中所有的点并回到原点的最短距离. 解题关键:floyd+状态压缩dp,注意floyd时k必须在最外层 转移方程:$dp[S][i] = \min (dp[S \wedge (1 ...
- POJ 3311 Hie with the Pie floyd+状压DP
链接:http://poj.org/problem?id=3311 题意:有N个地点和一个出发点(N<=10),给出全部地点两两之间的距离,问从出发点出发,走遍全部地点再回到出发点的最短距离是多 ...
- POJ 3311 Hie with the Pie(状压DP + Floyd)
题目链接:http://poj.org/problem?id=3311 Description The Pizazz Pizzeria prides itself in delivering pizz ...
- POJ 3311 Hie with the Pie (状压DP)
题意: 每个点都可以走多次的TSP问题:有n个点(n<=11),从点1出发,经过其他所有点至少1次,并回到原点1,使得路程最短是多少? 思路: 同HDU 5418 VICTOR AND WORL ...
- [POJ 3311]Hie with the Pie——谈论TSP难题DP解决方法
主题连接: id=3311">http://poj.org/problem?id=3311 题目大意:有n+1个点,给出点0~n的每两个点之间的距离,求这个图上TSP问题的最小解 ...
- POJ 3311 Hie with the Pie 【状压DP】
Description The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possi ...
- poj 3311 Hie with the Pie (状压dp) (Tsp问题)
这道题就是Tsp问题,稍微加了些改变 注意以下问题 (1)每个点可以经过多次,这里就可以用弗洛伊德初始化最短距离 (2)在循环中集合可以用S表示更清晰一些 (3)第一维为状态,第二维为在哪个点,不要写 ...
- POJ 3311 Hie with the Pie (BFS+最短路+状态压缩)
题意:类似于TSP问题,只是每个点可以走多次,求回到起点的最短距离(起点为点0). 分析:状态压缩,先预处理各点之间的最短路,然后sum[i][buff]表示在i点,状态为buff时所耗时...... ...
随机推荐
- 用Socket做一个局域网聊天工具(转)
原文:http://www.cnblogs.com/technology/archive/2010/08/15/1799858.html 程序设计成为简单的服务端和客户端之间的通信, 但通过一些方法可 ...
- eclipse adt 项目依赖,使用git上的项目
从git下载的android工程不能直接导入eclipse,有的项目要依赖这个项目,怎么办呢 好像只能新建一个android项目,然后把libs,res,src,AndroidManifest.xml ...
- 你足够了解Context吗?
你足够了解Context吗? 这里有关于Context的一切-写在前面: 当我还是一个24K纯Android新手的时候(现在是也是个小Android萌新),拿着工具书对着电脑敲敲打打,那个时候我就有一 ...
- 8000401a 错误 ,检索 COM 类工厂中 CLSID 为 的组件时失败,原因是出现以下错误: 8000401a。
"/"应用程序中的服务器错误. -------------------------------------------------------------------------- ...
- 【转】Asp.net中时间格式化的6种方法详细总结
1. 数据控件绑定时格式化日期方法: 代码如下: <asp:BoundColumn DataField="AddTime" HeaderText="添加时间&quo ...
- 【转】VS2012程序打包部署详解
上篇博客把收费系统的总体设计进行了一遍讲解,讲解的同时掺杂了些有关.NET编译机制的总结.程序编写测试完成后接下来我们要做的是打包部署程序,但VS2012让人心痛的是没有了打包工具.不知道出于什么原因 ...
- Android监听点击事件实现的三种方法
监听点击事件实现的三种方法:1.匿名内部类2.外部类3.直接实现接口 1.匿名内部类: package com.jereh.calculator; import android.content.Con ...
- 反向代理代理百度、google
<VirtualHost _default_:443> # ServerAdmin mail@localhost # DocumentRoot "/var/www/html&qu ...
- fiddler filter 过滤css 图片等
找到 request header->Show only if yrl contains: REGEX:(?insx)/[^\?/]*\.(css|ico|jpg|png|gif|bmp|wav ...
- 邮件发送工具类 SendMail.java
package com.util; import org.apache.commons.mail.EmailException; import org.apache.commons.mail.Simp ...