ZOJ 1241 Geometry Made Simple
/*
Mathematics can be so easy when you have a computer. Consider the following example. You probably know that in a right-angled triangle, the length of the three sides a, b, c (where c is the longest side, called the hypotenuse) satisfy the relation a*a+b*b=c*c. This is called Pythagora’s Law.
Here we consider the problem of computing the length of the third side, if two are given.
Input
The input contains the descriptions of several triangles. Each description consists of a line containing three integers a, b and c, giving the lengths of the respective sides of a right-angled triangle. Exactly one of the three numbers is equal to -1 (the ‘unknown’ side), the others are positive (the ‘given’ sides).
A description having a=b=c=0 terminates the input.
Output
For each triangle description in the input, first output the number of the triangle, as shown in the sample output. Then print “Impossible.” if there is no right-angled triangle, that has the ‘given’ side lengths. Otherwise output the length of the ‘unknown’ side in the format “s = l”, where s is the name of the unknown side (a, b or c), and l is its length. l must be printed exact to three digits to the right of the decimal point.
Print a blank line after each test case.
Sample Input
3 4 -1
-1 2 7
5 -1 3
0 0 0
Sample Output
Triangle #1
c = 5.000
Triangle #2
a = 6.708
Triangle #3
Impossible.
*/
#include<stdio.h>
#include<math.h> int main(){
double a,b,c;
int n=0;
while(scanf("%lf%lf%lf",&a,&b,&c)){
if(a==0&&b==0&&c==0)
break;
n++;
if (c==-1)
{
c=sqrt(a*a+b*b);
printf("Triangle #%d\n",n);
printf("c = %.3lf\n",c);
}
else
if (a==-1)
{
a=sqrt(c*c-b*b);
printf("Triangle #%d\n",n);
if (c>b)
printf("a = %.3lf\n",a);
else
printf("Impossible.\n");
}
else
if (b==-1)
{
b=sqrt(c*c-a*a);
printf("Triangle #%d\n",n);
if (c>a)
printf("b = %.3lf\n",b);
else
printf("Impossible.\n");
}
printf("\n"); } return 0;
}
ZOJ 1241 Geometry Made Simple的更多相关文章
- ZOJ Problem Set - 1241 Geometry Made Simple
水题不解释 #include <stdio.h> #include <math.h> int main() { ,flag=; double a,b,c; while(scan ...
- POJ题目细究
acm之pku题目分类 对ACM有兴趣的同学们可以看看 DP: 1011 NTA 简单题 1013 Great Equipment 简单题 102 ...
- 【转】POJ百道水题列表
以下是poj百道水题,新手可以考虑从这里刷起 搜索1002 Fire Net1004 Anagrams by Stack1005 Jugs1008 Gnome Tetravex1091 Knight ...
- MySQL所有函数及操作符
参考:Function and Operator Reference Name Description ABS() Return the absolute value ACOS() Return th ...
- arcgis地图服务之 identify 服务
arcgis地图服务之 identify 服务 在近期的一次开发过程中,利用IdentityTask工具查询图层的时候,请求的参数中ImageDisplay的参数出现了错误,导致查询直接不能执行,百度 ...
- 翻译:探索GLSL-用几何着色器(着色器库)实现法线可视化
翻译:探索GLSL-用几何着色器(着色器库)实现法线可视化 翻译自: Exploring GLSL – Normal Visualizer with Geometry Shaders (Shader ...
- Extensions for Spatial Data
http://dev.mysql.com/worklog/task/?spm=5176.100239.blogcont4270.8.j3asa7&id=6609 前文: 这两天因为项目原因看了 ...
- mysql 函数表
Name Description ABS() Return the absolute value ACOS() Return the arc cosine ADDDATE() Add time val ...
- cvpr2015papers
@http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...
随机推荐
- Android Webview 背景透明
两个关键点: 1 fBarParams.format = PixelFormat.RGBA_8888; 2 mWebView.setBackgroundColor(Color.TRAN ...
- 虚拟机的apache服务器不能被主机访问的问题
我在centos虚拟机上安装了elasticsearch服务,虚拟机里测试正常,但主机却无法访问elasticsearch.要说的是,虚拟机采用桥接模式,与主机相互ping得通. 后来查了资料发现,这 ...
- 利用smarty call函数实现无限极分类
定义一个function {function name=menu level=0} <ul class="level{$level}"> {foreach $data ...
- SharePoint 2013 Nintex Workflow 工作流帮助(二)
博客地址 http://blog.csdn.net/foxdave 工作流动作 1. Action Set(Logic and flow分组) 它是一个工作流的集合,可以理解为容器的东西.所以它本身并 ...
- HackRF实现GPS欺骗教程
硬件平台:HackRF One软件平台:MAC运行环境搭建系统平台:OS X 10.11 EI CapitanGPS终端:One Plus手机,飞行模式,仅GPS定位,GPS test App文章特点 ...
- C# 定义常量 两种实现方法
在C#中定义常量的方式有两种,一种叫做静态常量(Compile-time constant),另一种叫做动态常量(Runtime constant).前者用“const”来定义,后者用“readonl ...
- Linux内存管理之地址映射
写在前面:由于地址映射涉及到各种寄存器的设置访问,Linux对于不同体系结构处理器的地址映射采用不同的方法,例如对于i386及后来的32位的Intel的处理器在页式映射时采用的是2级页表映射,而对于I ...
- android死机问题
一般在平时工作中,基本上很多代码可以在eclipse+ndk进行调试,但如果需要用到具体的硬件设备,如媒体播放设备无法模拟的情况下,只能上硬件(盒子或手机)上进行调试.此时唯一的调试手段就是logca ...
- 解决:Android4.3锁屏界面Emergency calls only - China Unicom与EMERGENCY CALL语义重复
从图片中我们可以看到,这里在语义上有一定的重复,当然这是谷歌的原始设计.这个问题在博客上进行共享从表面上来看着实没有什么太大的意义,不过由于Android4.3在锁屏功能上比起老版本做了很大的改动,而 ...
- 深入分析:Android中app之间的交互(二,使用ComponentName)
在前一篇相关主题的博文中我们了解了如何使用Action来启动当前应用之外的Activity处理我们的业务逻辑,在本篇笔记中我在简单介绍一下使用ComponentName来与当前应用之外的应用进行交互. ...