题目连接

http://poj.org/problem?id=3641

Pseudoprime numbers

Description

Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.

Output

For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

Sample Input

3 2
10 3
341 2
341 3
1105 2
1105 3
0 0

Sample Output

no
no
yes
no
yes
yes

快速幂。。

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<set>
using std::min;
using std::sort;
using std::pair;
using std::swap;
using std::vector;
using std::multiset;
#define pb(e) push_back(e)
#define sz(c) (int)(c).size()
#define mp(a, b) make_pair(a, b)
#define all(c) (c).begin(), (c).end()
#define iter(c) __typeof((c).begin())
#define cls(arr, val) memset(arr, val, sizeof(arr))
#define cpresent(c, e) (find(all(c), (e)) != (c).end())
#define rep(i, n) for(int i = 0; i < (int)n; i++)
#define tr(c, i) for(iter(c) i = (c).begin(); i != (c).end(); ++i)
const int N = 1 << 17;
const int INF = ~0u >> 1;
typedef unsigned long long ull;
bool isPrime(ull n) {
for(int i = 2; (ull)i * i <= n; i++ ) {
if(n % i == 0) {
return false;
}
}
return n != 1;
}
ull mod_pow(ull a, ull p) {
ull ans = 1, M = p;
while(p) {
if(p & 1) ans = ans * a % M;
a = a * a % M;
p >>= 1;
}
return ans;
}
int main() {
#ifdef LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w+", stdout);
#endif
ull a, p;
while(~scanf("%lld %lld", &p, &a), a + p) {
if(isPrime(p)) { puts("no"); continue; }
puts(a % p == mod_pow(a, p) ? "yes" : "no");
}
return 0;
}

poj 3641 Pseudoprime numbers的更多相关文章

  1. POJ 3641 Pseudoprime numbers (数论+快速幂)

    题目链接:POJ 3641 Description Fermat's theorem states that for any prime number p and for any integer a ...

  2. poj 3641 Pseudoprime numbers 快速幂+素数判定 模板题

    Pseudoprime numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7954 Accepted: 3305 D ...

  3. poj 3641 Pseudoprime numbers Miller_Rabin测素裸题

    题目链接 题意:题目定义了Carmichael Numbers 即 a^p % p = a.并且p不是素数.之后输入p,a问p是否为Carmichael Numbers? 坑点:先是各种RE,因为po ...

  4. poj 3641 Pseudoprime numbers(快速幂)

    Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a ...

  5. POJ 3641 Pseudoprime numbers (miller-rabin 素数判定)

    模板题,直接用 /********************* Template ************************/ #include <set> #include < ...

  6. HDU 3641 Pseudoprime numbers(快速幂)

    Pseudoprime numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11336   Accepted: 4 ...

  7. poj Pseudoprime numbers 3641

    Pseudoprime numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10903   Accepted: 4 ...

  8. 【POJ - 3641】Pseudoprime numbers (快速幂)

    Pseudoprime numbers Descriptions 费马定理指出,对于任意的素数 p 和任意的整数 a > 1,满足 ap = a (mod p) .也就是说,a的 p 次幂除以  ...

  9. POJ 3641

    Pseudoprime numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6044   Accepted: 24 ...

随机推荐

  1. memcached学习(3)memcached的删除机制和发展方向

    memcached是缓存,所以数据不会永久保存在服务器上,这是向系统中引入memcached的前提. 本次介绍memcached的数据删除机制,以及memcached的最新发展方向--二进制协议(Bi ...

  2. Type-base dispatch

    In the previous section we added two Time objects, but you also might want to add an integer to a Ti ...

  3. Oracle建立表空间和用户

    Oracle建立表空间和用户 建立表空间和用户的步骤: 用户 建立:create user 用户名 identified by "密码"; 授权:grant create sess ...

  4. Activity使用Dialog样式导致点击空白处自动关闭的问题

    将Activity设置成窗口的样式实现Dialog或者Popupwindow效果在开发中是很常用的一种方式,在AndroidMenifest.xml中将需要设置的Activity增加android:t ...

  5. 使用Servlet处理请求<http://blog.sina.com.cn/s/blog_5d3fb3cc0100ep9q.html>

    一.GET和POST的区别 1.GET提交的是文本内容,规定其数据长度不超过255个字符.在GET方式提交的URL中会显示出提交的查询数据而却提交数据的缓存会在浏览器的URL历史状态中,这样我们往往在 ...

  6. a different object with the same identifier value was already associat

    问题:这个著名的托管态update更新异常 org.hibernate.NonUniqueObjectException: a different object with the same ident ...

  7. C# Webservice 解决在运行配置文件中指定的扩展时出现异常。 ---> System.Web.HttpException: 超过了最大请求长度问

    摘自: http://blog.csdn.net/gulijiang2008/article/details/4482993 请在服务器端配置 方法一: 在通过WebService处理大数据量数据时出 ...

  8. DELL服务器SAS 5 I_R 完全配置手册

    http://wenku.baidu.com/view/f258a36eb84ae45c3b358c55.html?re=view

  9. U盘加载硬盘控制卡驱动安装Windows 2003 指南

    http://www.dell.com/Support/Article/cn/zh/cnbsd1/SLN263067

  10. "/Date(1405056837780)/" 时间转换

    //往往json传过来的时间都是"/Date(1405056837780)/" //转换需要的方法 String.prototype.ToString = function (fo ...