Description

给定一棵树,边的颜色为黑或白,初始时全部为白色。维护两个操作:
1.查询u到根路径上的第一条黑色边的标号。
2.将u到v    路径上的所有边的颜色设为黑色。
Notice:这棵树的根节点为1

Input

第一行两个数n,m分别表示点数和操作数。
接下来n-?    1行,每行2个数u,v.表示一条u到v的边。
接下来m行,每行为以下格式:
1 v 表示第一个操作
2 v u 表示第二种操作

Output

对于每个询问,输出相应答案。如果不存在,输出0。

由于边只会由白变黑,所以总的边修改次数为O(n),用并查集维护每个点到根的路径上最深的白边位置,预处理出边的染色顺序

逆序处理操作,用并查集维护,一开始把所有点合并到到根路径上第一条黑边,每取消一次染色就把边的下侧节点合并到上侧

#include<cstdio>
const int N=,R=;
char buf[R+],*ptr=buf-;
inline int _int(){
int x=,c=*++ptr;
while(c<)c=*++ptr;
while(c>)x=x*+c-,c=*++ptr;
return x;
}
int stk[],stp=;
inline void int_(int x){
if(!x)stk[++stp]=;
while(x)stk[++stp]=x%,x/=;
while(stp)putchar(stk[stp--]+);
putchar();
}
int n,m;
bool ed[N];
int f[N],q[N],ql,qr,dep[N],fa[N],id[N],aid[N];
int et[N*],enx[N*],e0[N],eid[N*],ep=;
int qs[N*],qw[N*],qp=,as[N],ap=;
inline int get(int x){
int a=x,c;
while(x!=f[x])x=f[x];
while(x!=(c=f[a]))f[a]=x,a=c;
return x;
}
int main(){
fread(buf,,R,stdin);
n=_int();m=_int();
for(int i=;i<=n;i++)f[i]=i;
for(int i=;i<n;i++){
int a=_int(),b=_int();
et[ep]=b;enx[ep]=e0[a];eid[ep]=i;e0[a]=ep++;
et[ep]=a;enx[ep]=e0[b];eid[ep]=i;e0[b]=ep++;
}
ql=qr=;
q[qr++]=;
dep[]=;
while(ql!=qr){
int w=q[ql++];
for(int i=e0[w];i;i=enx[i])if(int u=et[i]){
et[i^]=;
fa[u]=w;
id[u]=eid[i];
dep[q[qr++]=u]=dep[w]+;
}
}
for(int i=;i<m;i++)if(_int()==){
qs[qp]=;qw[qp++]=_int();
}else{
int a=get(_int()),b=get(_int());
while(a!=b){
if(dep[a]<dep[b]){int t=a;a=b;b=t;}
qw[qp++]=a;
aid[a]=id[a];
ed[a]=;
a=f[a]=get(fa[a]);
}
}
for(int i=;i<=n;i++)f[i]=i;
ql=qr=;
q[qr++]=;
while(ql!=qr){
int w=q[ql++];
for(int i=e0[w];i;i=enx[i])if(int u=et[i]){
if(ed[w]&&!ed[u])ed[u]=,f[get(u)]=get(w);
q[qr++]=u;
}
}
for(int i=qp-;~i;i--)
if(qs[i])as[ap++]=aid[get(qw[i])];
else f[get(qw[i])]=get(fa[qw[i]]);
while(ap)int_(as[--ap]);
return ;
}

bzoj3319: 黑白树的更多相关文章

  1. 【BZOJ3319】黑白树 并查集

    [BZOJ3319]黑白树 Description 给定一棵树,边的颜色为黑或白,初始时全部为白色.维护两个操作:1.查询u到根路径上的第一条黑色边的标号.2.将u到v    路径上的所有边的颜色设为 ...

  2. 【BZOJ】3319: 黑白树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...

  3. 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...

  4. uoj #139. 【UER #4】被删除的黑白树 dfs序 贪心

    #139. [UER #4]被删除的黑白树 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/139 Descript ...

  5. [BZOJ 3319] 黑白树

    3319: 黑白树 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 557  Solved: 194[Submit][Status][Discuss] ...

  6. CodeM美团点评编程大赛初赛B轮 黑白树【DFS深搜+暴力】

    [编程题] 黑白树 时间限制:1秒 空间限制:32768K 一棵n个点的有根树,1号点为根,相邻的两个节点之间的距离为1.树上每个节点i对应一个值k[i].每个点都有一个颜色,初始的时候所有点都是白色 ...

  7. 【UOJ139】【UER #4】被删除的黑白树(贪心)

    点此看题面 大致题意: 请你给一棵树黑白染色,使每一个叶结点到根节点的路径上黑节点个数相同. 贪心 显然,按照贪心的思想,我们要让叶结点到根节点的路径上黑节点的个数尽量大. 我们可以用\(Min_i\ ...

  8. 美团2017年CodeM大赛-初赛B轮-黑白树

    https://ac.nowcoder.com/acm/problem/13249 链接:https://ac.nowcoder.com/acm/problem/13249来源:牛客网 题目描述 一棵 ...

  9. 【uoj#139】[UER #4]被删除的黑白树 贪心

    题目描述 给出一个 $n$ 个节点的树,$1$ 号点为根.现要将其中一些点染成黑色,使得每个叶子节点(不包括根节点)到根节点路径上的黑点数相同.求最多能够染多少个黑点. 题解 贪心 显然有结论:选择的 ...

随机推荐

  1. eclipse debug (调试) 学习心得

    eclipse debug (调试) 学习心得   进入debug模式:   1.设置断点   2.启动servers端的debug模式   3.运行程序,在后台遇到断点时,进入debug调试状态   ...

  2. 服务器重写技术:rewrite

    rewrite 是一种服务器的重写技术,它可以使得服务器支持 URL 重写,是一种最新流行的服务器技术. 主要功能:限制特定IP访问网站,实现URL的重写.

  3. thrift在windows的编译/安装--c++版

    前言: thrift是出于Facebook的rpc网络编程框架, 其对跨平台和多语言的支持优于google protobuf, 但thrift在java/c#语言上应用比较多, 资料也丰富, 在win ...

  4. 116. Populating Next Right Pointers in Each Node

    Given a binary tree struct TreeLinkNode { TreeLinkNode *left; TreeLinkNode *right; TreeLinkNode *nex ...

  5. 238. Product of Array Except Self

    Given an array of n integers where n > 1, nums, return an array output such that output[i] is equ ...

  6. ES6 — 字符串String

    ES6对字符串新增了一些函数和操作规范.下面我们来看ES6中对字符串新加的特性. 1.模版字符串 (即用反引号定义的字符串) 传统的字符串拼接通过我们使用'+'号与变量连接.例如: let name= ...

  7. Spring中@Transactional用法深度分析

    引言: 在Spring中@Transactional提供一种控制事务管理的快捷手段,但是很多人都只是@Transactional简单使用,并未深入了解,其各个配置项的使用方法,本文将深入讲解各个配置项 ...

  8. spring ioc 原理 spring aop原理

    大家一直都说spring的IOC如何如何的强大,其实我倒觉得不是IOC如何的强大,说白了IOC其实也非常的简单.我们先从IOC说起,这个概念其实是从我们平常new一个对象的对立面来说的,我们平常使用对 ...

  9. smartUpload组件文件上传

    public class SmartUploadServlet extends HttpServlet { public void doGet(HttpServletRequest request, ...

  10. about JNI

    1.Java对C/C++事件处理的封装JIT(Just in Time.Java语言的原动态编译技术) 大多数的游戏引擎都是使用可移植的C语言开发的,然后通过简单的封装以适应特殊的平台. 2.Andr ...