题目:高斯消元法

高斯消元法是一个模板,下面简单介绍其内容以及实现方法。

高斯消元是求一个求多元一次方程组的解的算法。

就是形式如下的关于x1,x2...xn的方程组的解。

a11x1 + a12x2 + ... + a1nxn = b1

a21x1 + a22x2 + ... + a2nxn = b2

. . .

. . .

. . .

an1x1 + an2x2 + ... + annxn = bn

高斯消元的核心思想是将上述方程组通过初等行列变换转化为如下形式

x1 + c12x2 + ... + c1nxn = b1

x2 + ... + a2nxn = b2

. . .

. . .

. . .

xn = bn

那么解也是显然了。

分三种情况

1.完美阶梯型--->唯一解

2.0=非零--->无解

3.0=0--->无穷多组解

所以如何将方程组完成该变化呢,有四步。

枚举每一列的系数

1.找到绝对值最大的那一行

2.将该行换到最上面

3.将该行第一个数变为1

4.将下面所有行的第c列清为0

举个例子分析一下:

原方程组:

x1 + 2x2 - x3 = -6

2x1 + x2 - 3x3 = -9

-x1 - x2 + 2x3 = 7

第一次操作后

x1 + 0.5x2 - 1.5x3 = -4.5

000 + 1.5x2 + 0.5x3 = -1.5

000 - 0.5x2 + 0.5x3 = 2.5

第二次操作后

x1 + 0.5x2 - 1.5x3 = -4.5

000 + x2 + (1/3)x3 = -1

000 + 000 + (2/3)x3 = 2

第三次操作后

x1 + 0.5x2 - 1.5x3 = -4.5

000 + x2 + (1/3)x3 = -1

000 + 000 + x3 = 3

此时已经完成了变换。

显然已经求出了 x3=3 , 接下来一次一次把新求得的值代入方程组即可。

求出此方程组解

x1=1

x2=-2

x3=3

那么这就是高斯消元法。

代码:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#define N 105
#define eps 1e-6
using namespace std;
int n;
double a[N][N];
int guass()
{
int r=0;
for(int c=0;c<n;c++)
{
int t=r;
for(int i=r;i<n;i++)
if(fabs(a[i][c])>fabs(a[t][c]))
t=i;
if(fabs(a[t][c])<eps)
continue;
for(int i=c;i<=n;i++)
swap(a[t][i],a[r][i]);
for(int i=n;i>=c;i--)
a[r][i]/=a[r][c];
for(int i=r+1;i<n;i++)
if(fabs(a[i][c])>eps)
for(int j=n;j>=c;j--)
a[i][j]-=a[r][j]*a[i][c];
++r;
}
if(r<n)
{
for(int i=r;i<n;i++)
if(fabs(a[i][n])>eps)
return 2; // 无解
return 1; // 无数解
}
for(int i=n-1;i>=0;i--)
for(int j=i+1;j<n;j++)
a[i][n]-=a[i][j]*a[j][n];
return 0;
}
int main()
{
scanf("%d",&n);
for(int i=0;i<n;i++)
for(int j=0;j<=n;j++)
scanf("%lf",&a[i][j]);
int t=guass();
if(!t)
{
for(int i=0;i<n;i++)
{
if(fabs(a[i][n])<eps)
a[i][n]=fabs(a[i][n]);
printf("%.2lf\n",a[i][n]);
}
}
else
puts("No Solution");
return 0;
}

2022春每日一题:Day 11的更多相关文章

  1. <每日一题>题目11:以文件夹名称作为参数,返回该文件夹下所有文件的路径

    ''' 分析: 1.知道文件夹名称(假设是形如:E:\\software\\Notepad++),很显然可以通过OS模块去求 2.OS.listdir(sPath),列出文件夹内所有的文件和文件夹,以 ...

  2. CISP/CISA 每日一题 11

    CISA 每日一题(答) 一个合理建造的数据仓库应当支持下列三种基本的查询格式: 1.向上溯源和向下溯源——向上溯源是对数据进行总计:向下溯源是将数据进行细化: 2.交叉溯源——通过通用属性访问数据仓 ...

  3. 老男孩IT教育-每日一题汇总

    老男孩IT教育-每日一题汇总 第几天 第几周 日期 快速访问链接 第123天 第二十五周 2017年8月25日 出现Swap file….already exists以下错误如何解决? 第122天 2 ...

  4. CISP/CISA 每日一题 五

    CISA 每日一题(答) 信息系统审计师要确认系统变更程序中的: 1.变更需求应有授权.优先排序及跟踪机制: 2.日常工作手册中,明确指出紧急变更程序: 3.变更控制程序应同时为用户及项目开发组认可: ...

  5. [每日一题]ES6中为什么要使用Symbol?

    关注「松宝写代码」,精选好文,每日面试题 加入我们一起学习,day day up 作者:saucxs | songEagle 来源:原创 一.前言 2020.12.23日刚立的flag,每日一题,题目 ...

  6. [每日一题]面试官问:谈谈你对ES6的proxy的理解?

    [每日一题]面试官问:谈谈你对ES6的proxy的理解? 关注「松宝写代码」,精选好文,每日一题 作者:saucxs | songEagle 一.前言 2020.12.23 日刚立的 flag,每日一 ...

  7. 【js】Leetcode每日一题-完成所有工作的最短时间

    [js]Leetcode每日一题-完成所有工作的最短时间 [题目描述] 给你一个整数数组 jobs ,其中 jobs[i] 是完成第 i 项工作要花费的时间. 请你将这些工作分配给 k 位工人.所有工 ...

  8. 【JavaScript】Leetcode每日一题-青蛙过河

    [JavaScript]Leetcode每日一题-青蛙过河 [题目描述] 一只青蛙想要过河. 假定河流被等分为若干个单元格,并且在每一个单元格内都有可能放有一块石子(也有可能没有). 青蛙可以跳上石子 ...

  9. 【JavaScript】Leetcode每日一题-平方数之和

    [JavaScript]Leetcode每日一题-平方数之和 [题目描述] 给定一个非负整数 c ,你要判断是否存在两个整数 a 和 b,使得 a2 + b2 = c . 示例1: 输入:c = 5 ...

  10. 【python】Leetcode每日一题-寻找旋转排序数组中的最小元素

    [python]Leetcode每日一题-寻找旋转排序数组中的最小元素 [题目描述] 已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组.例如,原数组nums ...

随机推荐

  1. dotnet 设计规范 · 抽象定义

    严格来说,只有一个类被其他的类继承,那么这个类就是基类.在很多时候,基类的定义是提供足够的抽象和通用方法和属性.默认实现.在继承关系中,基类定义在上层抽象和底层自定义之间. 他们充当抽象实现的实现帮助 ...

  2. echarts学习笔记(一)

    echarts学习笔记(一) echarts开发步骤 创建一个新的html文件 在html文件head头部信息中导入echarts 声明一个容器(可以理解为画布),用于存放echarts 实例化ech ...

  3. Html飞机大战(一):绘制动态背景

    好家伙,飞机大战终于开始弄了 这会有很多很多复杂的东西,但是我们总要从最简单,和最基础的部分开始,   我们先从背景开始弄吧! 1.绘制静态背景 这里我们会用到canvas <!DOCTYPE ...

  4. MFRC522学习笔记

    MFRC522主要特性 容量为8K位(bits)=1K字节(bytes)EEPROM 分为16个扇区,每个扇区为4块,每块16个字节,以块为存取单位 每个扇区有独立的一组密码及访问控制 每张卡有唯一序 ...

  5. KingbaseES wal(xlog) 日志清理故障恢复案例

    案例说明: 在通过sys_archivecleanup工具手工清理wal日志时,在control文件中查询的检查点对应的wal日志是"000000010000000000000008&quo ...

  6. 【面试题】JS改变this指向的三种方法

    一.this指向 点击打开视频讲解更加详细 this随处可见,一般谁调用,this就指向谁.this在不同环境下,不同作用下,表现的也不同. 以下几种情况,this都是指向window 1.全局作用下 ...

  7. G&GH05 删除文件和.gitignore

    注意事项与声明 平台: Windows 10 作者: JamesNULLiu 邮箱: jamesnulliu@outlook.com 博客: https://www.cnblogs.com/james ...

  8. vscode用户自定义代码中如何表示table空格

    "Print to phpfuntion": { "scope": "php", "prefix": "pfu ...

  9. 【学习笔记】 第05章 pandas入门

    前言 上一篇学习中学成的随笔是我的第一篇随笔,撰写中有颇多不足,比如事无巨细的写入学习过程反而像是在抄书,失去了很多可读性也不利于自己反过头来复习,本章节学习需要多加注意,尽量写下较为关键的内容,犯下 ...

  10. git commit 规范