题面

题解

看到网上写了很多DSU和线段树合并的题解,笔者第一次做也是用的线段树合并,但在原题赛的时候却怕线段树合并调不出来,于是就用了更好想更好调的莫队。

这里笔者就说说莫队怎么做吧。

我们可以通过 dfs 序把点都拍到序列上,然后每个点的主导编号和就相当于询问一段区间的主导编号和,并且这样的询问刚好 n 个。

那么维护两个数组和一个变量

  • C

    [

    i

    ]

    C[i]

    C[i]:第

    i

    i

    i 种颜色的出现次数

  • S

    m

    [

    i

    ]

    Sm[i]

    Sm[i]:出现

    i

    i

    i 次的颜色编号和

  • a

    n

    s

    ans

    ans:出现的最多次数是几次(即实际的答案是

    S

    m

    [

    a

    n

    s

    ]

    Sm[ans]

    Sm[ans],这样方便维护些)

当我们的序列中新加入一个点时(我们已经开始跑莫队了),设这个点的颜色为

c

o

l

col

col ,那么

C

[

c

o

l

]

C[col]

C[col] 很好维护吧,

S

m

[

.

.

.

]

Sm[...]

Sm[...] 也很好维护吧,那么我们需要证明一个结论:

a

n

s

ans

ans 每次变动的幅度最多为 1。

其实很好证,由于每次

C

[

c

o

l

]

C[col]

C[col] 最多改 1,因此

S

m

[

.

.

.

]

Sm[...]

Sm[...] 只在长度为 2 的范围内有变动,其中一个清零的话,另一个肯定会有值,而

a

n

s

ans

ans 的值只取决于最大的有值的

S

m

[

.

.

.

]

Sm[...]

Sm[...] ,因此由于最大的

S

m

Sm

Sm 最多变动 1,所以

a

n

s

ans

ans 也最多变动 1。在脑袋里模拟一下也会理解的。

具体怎么操作可以看代码的

i

n

s

(

)

ins()

ins() 和

d

e

l

(

)

del()

del() 函数。

CODE

#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 100005
#define LL long long
#define ENDL putchar('\n')
#define DB double
#define lowbit(x) (-(x) : (x))
LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return x * f;
}
const int MOD = 1000000007;
int n,m,i,j,s,o,k,sq;
vector<int> g[MAXN];
int dfn[MAXN],rr[MAXN],cnt,id[MAXN];
int cl[MAXN];
void dfs(int x,int fa) {
dfn[x] = ++ cnt; id[cnt] = x;
for(int i = 0;i < (int)g[x].size();i ++) {
if(g[x][i] != fa) {
dfs(g[x][i],x);
}
}
rr[x] = cnt;
return ;
}
struct it{
int l,r,id;
}q[MAXN];
bool cmp(it a,it b) {
if(a.l/sq != b.l/sq) return a.l < b.l;
return a.r < b.r;
}
int L,R,c[MAXN],ans;
LL sm[MAXN],as[MAXN];
void ins(int x) { // x 是点编号
int col = cl[x];
sm[c[col]] -= col;
c[col] ++;
sm[c[col]] += col;
if(sm[ans+1] > 0) ans ++;
else if(!sm[ans]) ans --;
return ;
}
void del(int x) {
int col = cl[x];
sm[c[col]] -= col;
c[col] --;
sm[c[col]] += col;
if(sm[ans+1] > 0) ans ++;
else if(!sm[ans]) ans --;
return ;
}
int main() {
n = read();
sq = (int)sqrt((DB)n);
for(int i = 1;i <= n;i ++) cl[i] = read();
for(int i = 1;i < n;i ++) {
s = read();o = read();
g[s].push_back(o);
g[o].push_back(s);
}
dfs(1,0);
for(int i = 1;i <= n;i ++) {
q[i].id = i;
q[i].l = dfn[i];q[i].r = rr[i];
}
sort(q + 1,q + 1 + n,cmp);
L = 1,R = 0;
for(int i = 1;i <= n;i ++) {
int l = q[i].l,r = q[i].r;
while(L > l) ins(id[-- L]);
while(R < r) ins(id[++ R]);
while(L < l) del(id[L ++]);
while(R > r) del(id[R --]);
as[q[i].id] = sm[ans];
}
for(int i = 1;i <= n;i ++) {
printf("%lld ",as[i]);
}ENDL;
return 0;
}

CF600E Lomsat gelral (dfs序+莫队)的更多相关文章

  1. hdu 4358 Boring counting dfs序+莫队+离散化

    Boring counting Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 98304/98304 K (Java/Others) ...

  2. hdu 4358 Boring counting 离散化+dfs序+莫队算法

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4358 题意:以1为根节点含有N(N <= 1e5)个结点的树,每个节点有一个权值(weight ...

  3. Codeforces 375D - Tree and Queries(dfs序+莫队)

    题目链接:http://codeforces.com/contest/351/problem/D 题目大意:n个数,col[i]对应第i个数的颜色,并给你他们之间的树形关系(以1为根),有m次询问,每 ...

  4. Codeforces 375D Tree and Queries(DFS序+莫队+树状数组)

    题目链接  Tree and Queries 题目大意  给出一棵树和每个节点的颜色.每次询问$vj, kj$ 你需要回答在以$vj$为根的子树中满足条件的的颜色数目, 条件:具有该颜色的节点数量至少 ...

  5. HDU 4358 Boring counting dfs序+莫队算法

    题意:N个节点的有根树,每个节点有一个weight.有Q个查询,问在以u为根的子树中,有恰好出现了K次的weight有多少种. 这是第一次写莫队算法,之前也只是偶有耳闻. 看了别人的代码打的,还是贴上 ...

  6. codeforces 375D . Tree and Queries 启发式合并 || dfs序+莫队

    题目链接 一个n个节点的树, 每一个节点有一个颜色, 1是根节点. m个询问, 每个询问给出u, k. 输出u的子树中出现次数大于等于k的颜色的数量. 启发式合并, 先将输入读进来, 然后dfs完一个 ...

  7. CF600E Lomsat gelral(dsu on tree)

    dsu on tree跟冰茶祭有什么关系啊喂 dsu on tree的模板题 思想与解题过程 类似树链剖分的思路 先统计轻儿子的贡献,再统计重儿子的贡献,得出当前节点的答案后再减去轻儿子对答案的贡献 ...

  8. CF600E Lomsat gelral 和 CF741D Dokhtar-kosh paths

    Lomsat gelral 一棵以\(1\)为根的树有\(n\)个结点,每个结点都有一种颜色,每个颜色有一个编号,求树中每个子树的最多的颜色编号(若有数量一样的,则求编号和). \(n \le 10^ ...

  9. CF600E Lomsat gelral 【线段树合并】

    题目链接 CF600E 题解 容易想到就是线段树合并,维护每个权值区间出现的最大值以及最大值位置之和即可 对于每个节点合并一下两个子节点的信息 要注意叶子节点信息的合并和非叶节点信息的合并是不一样的 ...

随机推荐

  1. Linux挂载iso镜像、配置本地yum源

    Linux挂载iso镜像.配置本地yum源 1.备份原yum源配置文件 [root@localhost ~]# ll /etc/yum.repos.d/ [root@localhost ~]# mkd ...

  2. .NET中线程锁的使用

    更新记录 本文迁移自Panda666原博客,原发布时间:2021年7月1日. 一.说明 由于经常需要在多线程代码中使用Monitor进行同步,并且需要自己去手写try/finally块.因此C#提供了 ...

  3. VueX的热更替你知道多少?

    前言 我们在使用Vuex的时候,会时不时的更改Vuex内的数据,但是页面不会随之更新,如果数据量大,一个数据依赖另一个数据的话,这样我们要是再刷新页面的话会把以前依赖的数据清空,效率特别低.所以,今天 ...

  4. SAP 实例 1 Images in HTML

    REPORT zharpo_010 NO STANDARD PAGE HEADING. TABLES : t001. TYPE-POOLS: slis. DATA : w_repid LIKE sy- ...

  5. RPA应用场景-银行回单查询

    场景概述银行回单查询 所涉系统名称银行网银 人工操作(时间/次) 5 分钟 所涉人工数量 4 操作频率不定时 场景流程 1.收到外派业务员申请查询收入银行回单的邮件: 2.依据邮件中提供的客户信息进入 ...

  6. 文本处理工具-vim编辑器的常见用法

    文本编辑工具分类: (1)全屏编辑器: nano(字符编辑器).vi.vim (2)行编辑器: sed:可以逐行改文件 vi编辑器 全名:Visual editor,linux系统自带的文本编辑工具 ...

  7. application.yml 常用基本配置

    前言 在平时的项目开发中,自己对application.yml的配置的写法较为熟悉,现在自己就application.yml常用的配置进行总结如下: 1.Tomcat 配置 server: #设置请求 ...

  8. Java创建TXT文件并写入 内容

    public static void main(String[] args) { String filePath = "E:/" + "1.txt"; Stri ...

  9. .Net 应用考虑x64生成

    在x86架构下使用32位应用程序,理论上32位能够分配4G的大小空间,但实际上默认 .NET Framework 可以创建一个不超过 2 GB 的对象,在实际使用过程中可能使用到1.5G的样子就会报内 ...

  10. golang的超时处理使用技巧

    原文链接:https://www.zhoubotong.site/post/57.html golang的超时处理 2天前Go实例技巧25   大家知道Select 是 Go 中的一个控制结构,每个  ...