题面

[CF1536F] Omkar and Akmar

甲乙轮流在一个有

N

N

N 个位置的环上放字母(环上每个位置不同),每次可以放一个 AB ,要求不能有相同的字母相邻,轮到某个人时不能走了,另一个人就获胜。问在两个人都绝对聪明的情况下,有多少种不同的游戏进程

答案对

1

0

9

+

7

10^9+7

109+7 取模,

2

N

1

0

6

2\leq N\leq 10^6

2≤N≤106。

样例输入2
样例输出4

题解

很不幸,我们做过原题,幸运的是,我忘了。

不难推出一个结论:后手必胜(

2

N

2\leq N

2≤N)。原因是,最终不能走的时候,场上 AB 的总数一定是偶数(反证法易证),意味着最后一个走的是后手。

而且这个结论强大的地方在于,不论你怎么走,只要最后必须无子可放,那么后手想输都输不了。

接下来,游戏进程就可以不用考虑博弈论的问题了。

我们枚举最终有多少个字母,然后剩余的空白就填入 AB 之间,再确定哪些是甲走的哪些是乙走的,最后确定每个人放的字母的相对顺序,那么最终答案就是

i

=

1

n

/

2

(

(

2

i

n

2

i

)

+

(

2

i

1

n

2

i

1

)

)

2

(

2

i

i

)

(

i

!

)

2

\sum_{i=1}^{n/2}\Bigg( {2i\choose n-2i}+{2i-1\choose n-2i-1} \Bigg)\cdot2\cdot{2i\choose i}\cdot (i!)^2

i=1∑n/2​((n−2i2i​)+(n−2i−12i−1​))⋅2⋅(i2i​)⋅(i!)2

中间乘 2 是因为 ABAB...BABA... 都有可能。

CODE

#include<cstdio>
#include<vector>
#include<cmath>
#include<ctime>
#include<queue>
#include<map>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 1000005
#define DB double
#define LL long long
#define ENDL putchar('\n')
#define lowbit(x) ((-x) & (x))
#define INF 0x3f3f3f3f
LL read() {
LL f=1,x=0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f * x;
}
const int MOD = 1000000007;
int n,m,i,j,s,o,k;
int fac[MAXN],inv[MAXN],invf[MAXN];
int C(int n,int m) {
if(m < 0 || m > n) return 0;
return fac[n] *1ll* invf[m] % MOD *1ll* invf[n-m] % MOD;
}
int main() {
n = read();
fac[0] = fac[1] = inv[0] = inv[1] = invf[0] = invf[1] = 1;
for(int i = 2;i <= n;i ++) {
fac[i] = fac[i-1] *1ll* i % MOD;
inv[i] = (MOD-inv[MOD%i]) *1ll* (MOD/i) % MOD;
invf[i] = invf[i-1] *1ll* inv[i] % MOD;
}
int ans = 0,po = 1;
for(int i = 2;i <= n;i += 2) {
po = po *4ll % MOD;
int as = 0;
(as += C(i,n-i) *2ll % MOD) %= MOD;
(as += C(i-1,n-i-1) *2ll % MOD) %= MOD;
(ans += as *1ll* C(i,i/2) % MOD *1ll* fac[i/2] % MOD *1ll* fac[i/2] % MOD) %= MOD;
}
printf("%d\n",ans);
return 0;
}

[CF1536F] Omkar and Akmar(博弈论?组合数学)的更多相关文章

  1. BZOJ2281:[SDOI2011]黑白棋(博弈论,组合数学,DP)

    Description 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小 ...

  2. 《Mathematical Olympiad——组合数学》——操作和游戏

    这篇文章,我们开始对奥数中有关操作和游戏的问题进行分析和讨论,其实在信息学竞赛中涉及到的一些博弈问题(分析必胜策略)的问题(例如巴什博弈.尼姆博弈),本质上来讲,就是组合数学当中的组合游戏,并不是真正 ...

  3. 浅谈博弈论中的两个基本模型——Bash Game&&Nim Game

    最近在数学这一块搞了蛮多题目,已经解决了数论基础,线性代数(只有矩阵,行列式待坑),组合数学中的一些简单问题.所以接下来不可避免的对博弈论这一哲学大坑开工. 当然,由于我很菜,所以也只能从最基础最容易 ...

  4. IT人生知识分享:博弈论的理性思维

    背景: 昨天看了<最强大脑>,由于节目比较有争议性,不知为什么,作为一名感性的人,就想试一下如果自己理性分析会是怎样的呢? 过程是这样的: 中国队(3人)VS英国队(4人). 1:李建东( ...

  5. [poj2348]Euclid's Game(博弈论+gcd)

    Euclid's Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9033   Accepted: 3695 Des ...

  6. 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)

    Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...

  7. TYVJ博弈论

    一些比较水的博弈论...(为什么都没有用到那什么SG呢....) TYVJ 1140  飘飘乎居士拯救MM 题解: 歌德巴赫猜想 #include <cmath> #include < ...

  8. Codeforces 549C. The Game Of Parity[博弈论]

    C. The Game Of Parity time limit per test 1 second memory limit per test 256 megabytes input standar ...

  9. poj 3734 Blocks 快速幂+费马小定理+组合数学

    题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...

随机推荐

  1. zigbee技术数传电台在石油探井状态监测系统

    石油探井分布分散,数量众多,出现异常现象需及时处理.人工巡视耗时长.时效性差:有线传输存在布线繁琐.成本高.现场无移动网络覆盖等诸多缺点. 现需要一种支持大量接入.覆盖范围广.数据传输高效且有数据中心 ...

  2. SAP BDC 用户输入日期转系统日期格式: CONVERT_DATE_TO_EXTERNAL

    BDC中,日期输入格式不正确:可调用FM  CONVERT_DATE_TO_EXTERNAL DATA:l_bdcfield LIKE bdcdata-fval."BDC field val ...

  3. SAP BOM 笔记(本文仅作笔记使用,非原创)

    SAP各种BOM汇总--含义解释(简洁易懂)-转载(原文连接:http://blog.sina.com.cn/s/blog_b9137f430102xpam.html)感谢作者分享     订单BOM ...

  4. 基于springBoot项目如何配置多数据源

    前言 有时,在一个项目中会用到多数据源,现在对自己在项目中多数据源的操作总结如下,有不到之处敬请批评指正! 1.pom.xml的依赖引入 <dependency> <groupId& ...

  5. idea部署项目运行没问题,但是页面404。

    解决方案: 这个位置不要添加内容. 参考:https://blog.csdn.net/hupixiong/article/details/105443606

  6. JSON: JavaScript Object Notation

    JSON是JavaScript Object Notation 的缩写,是JS提供的一种数据交换格式.1) JSON对象本质上就是一个JS对象,但是这个对象比较特殊,它可以直接转换为字符串,在不同语言 ...

  7. JAVA解压.Z及.ZIP文件

    <!-- https://mvnrepository.com/artifact/org.apache.commons/commons-compress --> <dependency ...

  8. ESXI启用本地登录和SSH服务连接功能,使用Xshell连接

    1.选中Troubleshoot Options进行SSH服务配置 2.开启本地登录功能 3.开启远程连接功能 4.本地登录修改SSH服务允许基于密码登录 默认无法用密码登录ssh服务,只支持基于ke ...

  9. 第十三天python3 生成器yield

    生成器generator 生成器指的是生成器对象,可由生成器表达式得到,也可以使用yield关键字得到一个生成器函数,调用这个函数得到一个生成器对象: 生成器函数 函数体中包含yield语句的函数,返 ...

  10. Docker在手,天下我有,在Win10系统下利用Docker部署Gunicorn+Flask打造独立镜像

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_164 书接上回,之前一篇:Win10环境下使用Flask配合Celery异步推送实时/定时消息(Socket.io)/2020年最 ...