前言

前面给大家介绍了自己开发的LabVIEW AI视觉工具包,后来发现有一些onnx模型无法使用opencv dnn加载,且速度也偏慢,所以就有了今天的onnx工具包,如果你想要加载更多模型,追求更高的速度,那可以使用LabVIEW onnx工具包实现模型的推理与加速。


一、工具包内容

这个开放神经网络交互工具包主要优势如下:

  1. 简单编程:图形化编程,无需掌握文本编程基础即可完成机器视觉项目;

  2. 提供多种框架生成的onnx模型导入模块:包括pytorch、caffe、tensorflow、paddlepaddle等生成的onnx模型;

  3. 多种高效加速推理接口:CUDA、TensorRT对模型进行最大化的加速;

  4. 支持多种硬件加速:支持Nvidia GPU、Intel、TPU、NPU多种硬件加速

  5. 提供近百个应用程序范例:包括物体分类、物体检测、物体测量、图像分割、 人脸识别、自然场景下OCR等多种实用场景

工具包中的函数选版如下:

例如,一个摄像头采集并进行yolov5目标检测的范例程序,只需在LabVIEW中编写简单的图形化程序,即可实现。在大量简化编程难度的同时,也保持了c++的高效运行特性。

通常我们做项目,在部署过程中想要加速,无非就那么几种办法,如果我们的设备是CPU,那么可以用openvion,如果我们希望能够使用GPU,那么就可以尝试TensorRT了。那么为什么要选择TensorRT呢?因为我们目前主要使用的还是Nvidia的计算设备,TensorRT本身就是Nvidia自家的东西,那么在Nvidia端的话肯定要用Nvidia亲儿子了。

不过因为TensorRT的入门门槛略微有些高,直接劝退了想要入坑的玩家。其中一部分原因是官方文档比较杂乱;另一部分原因就是TensorRT比较底层,需要一点点C++和硬件方面的知识,学习难度会更高一点。我们做的开放神经网络交互工具包GPU版本,直接将TensorRT一起集成到了onnx_session中,可以加载任何onnx模型,可以使用CUDA或者TensorRT加速,实现高效的推理


二、工具包下载链接

https://pan.baidu.com/s/1vwCp1LuKEjYGM4goNYMagw?pwd=yiku


三、工具包安装步骤

详细安装步骤可查看:LabVIEW开放神经网络交互工具包(ONNX)(非NI Vision)下载与安装教程


四、实现物体识别

无论使用何种框架训练物体检测模型,都可以无缝集成到LabVIEW中,并使用工具包提供的CUDA、tensorRT接口实现加速推理,模型包括但不限于:

  • yolov5、yolov6、yolov7、pp-yoloe、yolox

  • torchvision中的图像分类、目标检测模型等

通过算法优化,在LabVIEW中运行模型的速度明显好于python,这对于对性能要求较高的工业现场来说非常友好实用。比如说:工地安全帽检测、物体表面缺陷检测等,如下图进行物体识别,在GPU模式下,无论是运行速度和识别率都可以达到工业级别。

  • yolov4实现目标检测:

  • 基于onnx,yolov5使用tensorRT实现推理加速:

  • NI vision采集图像、tensorRT加速实现yolov5目标检测

  • yolov5实现口罩检测:

  • yolov5实现安全帽检测:

  • yolov6实现目标检测:

  • yolox实现目标检测:

  • 百度PP-YOLOE实现目标检测:


五、实现图像分割

图像分割是当今计算机视觉领域的关键问题之一。从宏观上看,图像分割是一项高层次的任务,为实现场景的完整理解铺平了道路。场景理解作为一个核心的计算机视觉问题,其重要性在于越来越多的应用程序通过从图像中推断知识来提供营养。随着深度学习软硬件的加速发展,一些前沿的应用包括自动驾驶汽车、人机交互、医疗影像等,都开始研究并使用图像分割技术。

本次集成的工具包提供了多种图像分割的调用模块,并实现了GPU模式下TensorRT的加速运行。如: 语义分割:Segnet、deeplabv1~deeplabv3、deeplabv3+、u-net等; 实例分割:Mask-RCNN、PANet等


六、自然场景下的文字识别

工具包提供了文本检测定位(DB_TD500_resnet50、EAST)、文本识别的模块(CRNN),用户可以使用该模块实现自然场景下的中英文文字识别

应用:身份证识别、表单识别、包装盒标签检测等

七、人脸检测与识别

八、人体关键点检测

人体骨骼关键点对于描述人体姿态,预测人体行为至关重要。因此人体骨骼关键点检测是诸多计算机视觉任务的基础,例如动作分类,异常行为检测,以及自动驾驶等等。近年来,随着深度学习技术的发展,人体骨骼关键点检测效果不断提升,已经开始广泛应用于计算机视觉的相关领域。 本次集成的工具包提供了关键点检测的调用模块,并实现了GPU模式下TensorRT的加速运行。

总结

工具包的具体使用可以关注博主的后续博客,如果有问题可以在评论区里讨论,提问前请先点赞支持一下博主哦 更多问题可添加技术交流群进行进一步的探讨。qq群号:705637299,,进群请备注暗号:LabVIEW机器学习

如果文章对你有帮助,欢迎关注、点赞、收藏

LabVIEW开放神经网络交互工具包【ONNX】,大幅降低人工智能开发门槛,实现飞速推理的更多相关文章

  1. LabVIEW图形化的AI视觉开发平台(非NI Vision),大幅降低人工智能开发门槛

    前言 之前每次进行机器学习和模型训练的时候发现想要训练不同模型的时候需要使用不同的框架,有时候费了九牛二虎之力终于写下了几百行代码之后,才发现环境调试不通,运行效率也差强人意,于是自己写了一个基于La ...

  2. 开放神经网络交换(ONNX)工具

    开放神经网络交换(ONNX)工具 开放神经网络交换(ONNX)是一个开放的生态系统,它使人工智能开发人员能够在项目发展过程中选择正确的工具.ONNX为人工智能模型提供了一种开源格式,包括深度学习和传统 ...

  3. LabVIEW之安装队列工具包AMC安装问题解决

    LabVIEW之安装队列工具包AMC安装问题解决--VIPM无法连接LabVIEW 彭会锋 参考资料: http://www.labviewpro.net/forum_post_detail.php? ...

  4. “融而开放、合以创新”T-HIM融合通信技术开发实战

    本文来自腾讯云技术沙龙,本次沙龙主题为T-HIM融合通信技术开发实战 2018年,企业的数字化转型大规模兴起,"数字化经济"时代来临.如何利用数字化技术来支持业务的转型.增长与创新 ...

  5. percona-toolkit工具包的使用教程之开发类工具

    percona-toolkit工具包的使用教程之开发类工具 1.  pt-duplicate-key-checker l  功能介绍: 功能为从mysql表中找出重复的索引和外键,这个工具会将重复的索 ...

  6. 【神经网络与深度学习】【CUDA开发】caffe-windows win32下的编译尝试

    [神经网络与深度学习][CUDA开发]caffe-windows win32下的编译尝试 标签:[神经网络与深度学习] [CUDA开发] 主要是在开发Qt的应用程序时,需要的是有一个使用的库文件也只是 ...

  7. 【神经网络与深度学习】【Matlab开发】caffe-windows使能Matlab2015b接口

    [神经网络与深度学习][Matlab开发]caffe-windows使能Matlab2015b接口 标签:[神经网络与深度学习] [Matlab开发] 主要是想全部来一次,所以使能了Matlab的接口 ...

  8. 【神经网络与深度学习】【python开发】caffe-windows使能python接口使用draw_net.py绘制网络结构图过程

    [神经网络与深度学习][python开发]caffe-windows使能python接口使用draw_net.py绘制网络结构图过程 标签:[神经网络与深度学习] [python开发] 主要是想用py ...

  9. 【神经网络与深度学习】【Qt开发】【VS开发】从caffe-windows-visual studio2013到Qt5.7使用caffemodel进行分类的移植过程

    [神经网络与深度学习][CUDA开发][VS开发]Caffe+VS2013+CUDA7.5+cuDNN配置成功后的第一次训练过程记录<二> 标签:[神经网络与深度学习] [CUDA开发] ...

随机推荐

  1. Java SE 8 新增特性

    Java SE 8 新增特性 作者:Grey 原文地址: Java SE 8 新增特性 源码 源仓库: Github:java_new_features 镜像仓库: GitCode:java_new_ ...

  2. 牛客网 十二桥问题(状压DP)

    https://ac.nowcoder.com/acm/contest/1104/B 注意到\(\text{K}\)只有\(12\),因此对起点与每个毕经边对应的点单源最短路,\(\text{DP}\ ...

  3. Web 布局设计(一):固定侧边栏

    前言 闲着无事,做一些实战练习,今天实现一个如标题所示的布局设计.通过此次布局设计,我希望掌握position属性值 fixed.absolute.relative.width和height属性值 i ...

  4. Spring(一)- 初始 + DI+scope

    1.获取bean实例的三种方式 1.1 id 属性 1.1.1 jar <properties> <project.build.sourceEncoding>UTF-8< ...

  5. CF1442D Sum (动态规划,线段树分治)

    ( 宋 体 字 看 起 来 真 舒 服 ) _{_{(宋体字看起来真舒服)}} (宋体字看起来真舒服)​​ 题 面 ( 洛 谷 翻 译 ) 题面_{_{(洛谷翻译)}} 题面(洛谷翻译)​​ 给定 n ...

  6. SpringBoot 整合 MongoDB 实战介绍

    一.介绍 在前面的文章中,我们详细的介绍了 MongoDB 的配置和使用,如果你对 MongoDB 还不是很了解,也没关系,在 MongoDB 中有三个比较重要的名词:数据库.集合.文档! 数据库(D ...

  7. 【Azure Spring Cloud】Azure Spring Cloud服务,如何获取应用程序日志文件呢?

    问题描述 在使用Azure Spring Cloud服务时,如果要收集应用程序的日志.有控制台输出(实时流日志),也可以配置Log Analytics服务. 日志流式处理 可以通过以下命令在 Azur ...

  8. Homework4

    书籍链接:https://www.ituring.com.cn/article/13466(why Software Development Methodologies Suck?) 问:读 why ...

  9. Linux_tail总结

    tail 命令用法 功能从尾部显示文件若干行 语法: tail [ +/- num ][参数] 文件名 使用tail命令的-f选项可以方便的查阅正在改变的日志文件,tail -f filename会把 ...

  10. python一招完美搞定Chromedriver的自动更新

    日常的web自动化过程中,我们常常用python selenium库来操纵Chrome浏览器实现网页的自动化.这其中有个比较头疼的问题:Chrome的更新频率非常频繁,与之对应的Chromedrive ...