dp[u][0]表示u向下走的最大距离;

dp[u][1]表示u向下走的次大距离;

dp[u][2]表示u向上走的最大距离;

最后的答案就是每个点的max(dp[u][0],dp[u][2]);

求解次大距离并记录idx在求解向上最大距离中是有必要的,可以画图分析。

 1 #include<cstdio>
2 #include<cstring>
3 #include<algorithm>
4 using namespace std;
5 const int MAXN=10000+10;
6 int dp[MAXN][3];
7 int idx[MAXN];//用来记录u往下的最大距离经过哪个子节点
8 struct Edge{
9 int v,w,next;
10 }edge[MAXN<<1];
11 int cnt,head[MAXN];
12
13 void add(int u,int v,int w){
14 edge[cnt].v=v;
15 edge[cnt].w=w;
16 edge[cnt].next=head[u];
17 head[u]=cnt++;
18 }
19
20 void dfs1(int u,int fa){
21 int mx1=0,mx2=0;
22 for(int i=head[u];~i;i=edge[i].next){
23 int v=edge[i].v;
24 if(v==fa) continue;
25 dfs1(v,u);
26 int c=dp[v][0]+edge[i].w;
27 if(mx1<=c) mx2=mx1,mx1=c,idx[u]=v;
28 else if(mx2<c) mx2=c;
29 }
30 dp[u][0]=mx1;//向下走的最大值
31 dp[u][1]=mx2;//向下走的次大值
32 }
33
34 void dfs2(int u,int fa){//求u向上可以走的最大值
35 for(int i=head[u];~i;i=edge[i].next){
36 int v=edge[i].v;
37 if(v==fa) continue;
38 if(idx[u]==v)
39 dp[v][2]=max(dp[u][1],dp[u][2])+edge[i].w;
40 else
41 dp[v][2]=max(dp[u][0],dp[u][2])+edge[i].w;
42 dfs2(v,u);
43 }
44 }
45
46 int main(){
47 int n,a,b;
48 while(~scanf("%d",&n)){
49 cnt=0;
50 memset(head,-1,sizeof(head));
51 for(int i=2;i<=n;i++){
52 scanf("%d%d",&a,&b);
53 add(i,a,b);add(a,i,b);
54 }
55 memset(dp,0,sizeof(dp));
56 dfs1(1,1);
57 dfs2(1,1);
58 for(int i=1;i<=n;i++)
59 printf("%d\n",max(dp[i][0],dp[i][2]));
60 }
61 return 0;
62 }

HDU2196 Computer (树形DP-换根)的更多相关文章

  1. bzoj 3743 [Coci2015]Kamp——树形dp+换根

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3743 树形dp+换根. “从根出发又回到根” 减去 “mx ” . 注意dfsx里真的要改那 ...

  2. 树形dp换根,求切断任意边形成的两个子树的直径——hdu6686

    换根dp就是先任取一点为根,预处理出一些信息,然后在第二次dfs过程中进行状态的转移处理 本题难点在于任意割断一条边,求出剩下两棵子树的直径: 设割断的边为(u,v),设down[v]为以v为根的子树 ...

  3. poj3585 Accumulation Degree(树形dp,换根)

    题意: 给你一棵n个顶点的树,有n-1条边,每一条边有一个容量z,表示x点到y点最多能通过z容量的水. 你可以任意选择一个点,然后从这个点倒水,然后水会经过一些边流到叶节点从而流出.问你最多你能倒多少 ...

  4. poj3585 Accumulation Degree[树形DP换根]

    思路其实非常简单,借用一下最大流求法即可...默认以1为根时,$f[x]$表示以$x$为根的子树最大流.转移的话分两种情况,一种由叶子转移,一种由正常孩子转移,判断一下即可.换根的时候由頂向下递推转移 ...

  5. [题解](树形dp/换根)小x游世界树

    2. 小x游世界树 (yggdrasi.pas/c/cpp) [问题描述] 小x得到了一个(不可靠的)小道消息,传说中的神岛阿瓦隆在格陵兰海的某处,据说那里埋藏着亚瑟王的宝藏,这引起了小x的好奇,但当 ...

  6. HDU2196 - Computer(树形DP)

    题目大意 给定一颗n个结点的树,编号为1~n,要求你求出每个结点能到达的最长路径 题解 用动态规划解决的~~~~把1 当成树根,这样就转换成有根树了.我们可以发现,对于每个结点的最长路,要么是从子树得 ...

  7. computer(树形dp || 树的直径)

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  8. HDU 2196 Computer 树形DP 经典题

    给出一棵树,边有权值,求出离每一个节点最远的点的距离 树形DP,经典题 本来这道题是无根树,可以随意选择root, 但是根据输入数据的方式,选择root=1明显可以方便很多. 我们先把边权转化为点权, ...

  9. HDU 2196.Computer 树形dp 树的直径

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  10. HDU 2196 Computer 树形DP经典题

    链接:http://acm.hdu.edu.cn/showproblem.php? pid=2196 题意:每一个电脑都用线连接到了还有一台电脑,连接用的线有一定的长度,最后把全部电脑连成了一棵树,问 ...

随机推荐

  1. Vue 配置代理

    说明:这里的vue代理是指用vue静态服务器做代理.使用的是 http-proxy-middleware 这个模块(这个模块相当于是node.js的一个插件). 版本: vue-cli 3.0以上 修 ...

  2. Vue3 生命周期 && Hooks封装 && toRef

    1 # 一.Vue3.0与Vue2.0生命周期改动 2 beforDestroy改名为beforeUnmount 3 destroyed改名为unmounted 4 # Vue3.0页提供了Compo ...

  3. 使用.NET简单实现一个Redis的高性能克隆版(二)

    译者注 该原文是Ayende Rahien大佬业余自己在使用C# 和 .NET构建一个简单.高性能兼容Redis协议的数据库的经历. 首先这个"Redis"是非常简单的实现,但是他 ...

  4. 编译器工程师眼中的好代码:Loop Interchange

    摘要:本文将以Loop Interchange的场景为例,讲述在编写代码时可以拿到更优性能的书写方式. 本文分享自华为云社区<编译器工程师眼中的好代码(1):Loop Interchange&g ...

  5. 如何使用Solidity和Hardhat构建你自己的NFT以及NFT交易市场

    目录 目录 目录 1.ERC721的基础知识 1.1.什么是不可替代代币? 1.2.什么是 ERC-721? 1.3.什么是元数据 1.4.如何在链上保存NFT的图像 2.HardHat 3.创建项目 ...

  6. Luogu1099 树网的核 (暴力?,floyd?)(还未想正解,暴力就A了)

    阅读理解两小时,手敲暴力思考5分钟.然后\(n^3\)就A了 暴力代码 #include <iostream> #include <cstdio> #include <c ...

  7. 高效简单的.Net数据库“访问+操作”技术

    本文技术源自外企,并已在多个世界500强大型项目开发中运用. 本文适合有初步C#.Linq.Sql知识的同学阅读. 相关技术在IDataAccess接口中提供. IDataAccess所在的命名空间是 ...

  8. Mybatis框架--优化过程

    0. 原代码预览 简单实现在数据库中插入数据 public void testInsert() throws IOException { //获取核心配置文件的输入流 InputStream is = ...

  9. HttpServletResponse 类

    HttpServletResponse 类的作用 HttpServletResponse 类和 HttpServletRequest 类一样.每次请求进来,Tomcat 服务器都会创建一个 Respo ...

  10. Excel 逻辑函数(二):AND 和 OR

    前言 AND 函数是且:OR 函数是或.AND 函数中的条件必须都满足才返回 TRUE:OR 函数中的条件只要满足一个就返回 TRUE.AND 和 OR 的参数最多允许有 30 个. AND [题目] ...