【POJ 2400】 Supervisor, Supervisee(KM求最小权匹配)
【POJ 2400】 Supervisor, Supervisee(KM求最小权匹配)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 2538 | Accepted: 719 |
Description
them in her department (1 being "really want" and N being "really don't want"). In turn, each of the N candidates ranks each of the supervisors as to how much that person would like to work for that supervisor (again, 1 is "really want to work for him/her"
and N is "really don't want to work for him/her"). Given the scores that each supervisor has for each candidate, and the scores each candidate has for each manager, write a computer program to determine the "best match" of candidates to supervisors. The "best
match" is determined by finding the distribution that leads to the highest overall (i.e. sum of) satisfaction for all people. The closer a person is to her number one choice, the better. If everyone gets their number one choice, the average difference will
be 0.
Input
The next line will contain a single integer value N, 0 < N < 15, representing the number of supervisors (and the number of employees - there are N supervisors and N employees). The next N lines will be the preferences of each of the N supervisors. Each line
will contain N integer entries (1 through N for employees 1 through N), each separated by a space character, that represents the preferences of that supervisor from most preferred to least preferred. More specifically, the first entry on the line will represent
that supervisor's first choice, the second entry her second, and so on. The next N lines will be the preferences of the N employees, in the same format as the supervisors.
All lines of data in the input file will end with an empty line.
Output
with 1). On the next N lines, show each supervisor (starting with 1) followed by the employee with which she was matched (1 per line). NOTE: if there is more than one best match, matches should be listed in ascending permuted order (see sample output).
Separate each data set with an empty line.
Sample Input
2
7
1 2 3 4 5 6 7
2 1 3 4 5 6 7
3 1 2 4 5 6 7
4 1 2 3 5 6 7
5 1 2 3 4 6 7
6 1 2 3 4 5 7
7 1 2 3 4 5 6
1 2 3 4 5 6 7
2 1 3 4 5 6 7
3 1 2 4 5 6 7
4 1 2 3 5 6 7
5 1 2 3 4 6 7
6 1 2 3 4 5 7
7 1 2 3 4 5 6 2
1 2
2 1
1 2
1 2
Sample Output
Data Set 1, Best average difference: 0.000000
Best Pairing 1
Supervisor 1 with Employee 1
Supervisor 2 with Employee 2
Supervisor 3 with Employee 3
Supervisor 4 with Employee 4
Supervisor 5 with Employee 5
Supervisor 6 with Employee 6
Supervisor 7 with Employee 7 Data Set 2, Best average difference: 0.250000
Best Pairing 1
Supervisor 1 with Employee 1
Supervisor 2 with Employee 2
Source
题目大意就是n个上司与n名员工。每一个上司相应有想要搭配的员工。相同每一个员工有渴望搭配的上司。
输入第一行为N 之后n行为1~n号上司的期望 从左到右从最好到最差
相同之后n行是1~n号员工
匹配到最渴望的人值为0,否则从左到右一次加1
要求问平均期望的最小值,也就是最小值/2n
最小值用KM最小权匹配计算就可以,因为还要求输出解,有多解则输出多解。所以还要搜一下……
事实上数据非常少。找最小权匹配也用搜的也能够。
。
。
代码例如以下:
#include <iostream>
#include <cmath>
#include <vector>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
#include <list>
#include <algorithm>
#include <map>
#include <set>
#define LL long long
#define fread() freopen("in.in","r",stdin)
#define fwrite() freopen("out.out","w",stdout) using namespace std;
const int INF = 0x3f3f3f3f;
const int msz = 10000;
const double eps = 1e-8; int mp[23][33];
int lx[33],ly[33],link[33],slack[33],next[33];
bool visx[33],visy[33],vis[33];
int n,ans,cnt; bool cal(int x)
{
visx[x] = 1; for(int y = 0; y < n; ++y)
{
if(visy[y]) continue; int t = lx[x]+ly[y]-mp[x][y];
if(t == 0)
{
visy[y] = 1;
if(link[y] == -1 || cal(link[y]))
{
link[y] = x;
return 1;
}
}
else slack[y] = min(slack[y],t);
}
return 0;
} int KM()
{
memset(link,-1,sizeof(link)); for(int i = 0; i < n; ++i)
{
memset(slack,INF,sizeof(slack));
while(1)
{
memset(visx,0,sizeof(visx));
memset(visy,0,sizeof(visy)); if(cal(i)) break; int d = INF;
for(int i = 0; i < n; ++i)
if(!visy[i]) d = min(d,slack[i]); for(int i = 0; i < n; ++i)
if(visx[i]) lx[i] -= d; for(int i = 0; i < n; ++i)
if(visy[i]) ly[i] += d;
else slack[i] -= d;
}
} ans = 0;
for(int i = 0; i < n; ++i)
if(link[i] != -1) ans += mp[link[i]][i]; return -ans;
} void dfs(int id,int hs)
{
if(hs < ans) return;
if(id == n)
{
if(hs == ans)
{
printf("Best Pairing %d\n",++cnt);
for(int i = 0; i < n; ++i)
{
printf("Supervisor %d with Employee %d\n",i+1,next[i]+1);
}
}
return;
} for(int i = 0; i < n; ++i)
{
if(vis[i]) continue;
vis[i] = 1;
next[id] = i;
dfs(id+1,hs+mp[id][i]);
vis[i] = 0;
}
} int main()
{
int t,x;
scanf("%d",&t); for(int z = 1; z <= t; ++z)
{
scanf("%d",&n);
memset(ly,0,sizeof(ly)); for(int i = 0; i < n; ++i)
for(int j = 0; j < n; ++j)
{
scanf("%d",&x);
mp[x-1][i] = -j;
} for(int i = 0; i < n; ++i)
for(int j = 0; j < n; ++j)
{
scanf("%d",&x);
mp[i][x-1] -= j;
if(j == 0) lx[i] = mp[i][x-1];
else lx[i] = max(lx[i],mp[i][x-1]);
} printf("Data Set %d, Best average difference: %.6f\n",z,KM()*0.5/n); cnt = 0;
memset(vis,0,sizeof(vis));
dfs(0,0);
puts("");
} return 0;
}
【POJ 2400】 Supervisor, Supervisee(KM求最小权匹配)的更多相关文章
- poj 2195(KM求最小权匹配)
题目链接:http://poj.org/problem?id=2195 思路:我们都知道KM使用来求最大权匹配的,但如果要求最小权匹配,只需把图中的权值改为负值,求一次KM,然后权值和取反即可. ht ...
- 【POJ 2195】 Going Home(KM算法求最小权匹配)
[POJ 2195] Going Home(KM算法求最小权匹配) Going Home Time Limit: 1000MS Memory Limit: 65536K Total Submiss ...
- POJ 2400 Supervisor, Supervisee(KM二分图最大权值匹配)题解
题意:n个老板n个员工,先给你n*n的数据,i行j列代表第i个老板第j喜欢的员工是谁,再给你n*n的数据,i行j列代表第i个员工第j喜欢的老板是谁,如果匹配到第k喜欢的人就会产生一个分数k-1.现在让 ...
- POJ 2400 Supervisor, Supervisee(KM)
題目鏈接 題意 :N个部门和N个员工,每个部门要雇佣一个工人,部门对每个工人打分,从1~N,1表示很想要,N表示特别不想要,每个工人对部门打分,从1~N.1表示很想去这个部门,N表示特别不想去这个部门 ...
- Fixed Partition Memory Management UVALive - 2238 建图很巧妙 km算法左右顶点个数不等模板以及需要注意的问题 求最小权匹配
/** 题目: Fixed Partition Memory Management UVALive - 2238 链接:https://vjudge.net/problem/UVALive-2238 ...
- poj 3686(拆点+最小权匹配)
题目链接:http://poj.org/problem?id=3686 思路:显然工件为X集,机器为Y集合.由于每个机器一次只能加工一个部件,因此我们可以将一台机器拆成N个点,至于部件与机器之间连多大 ...
- POJ 2400 最小权匹配
吐槽:首先,这道题的输入居然是错的.要将上下两个矩阵的位置换一下才可以出样例,也就是上面那个矩阵是employee对Supervisor的打分,下面那个矩阵才是Supervisor对employee的 ...
- poj3565 Ants km算法求最小权完美匹配,浮点权值
/** 题目:poj3565 Ants km算法求最小权完美匹配,浮点权值. 链接:http://poj.org/problem?id=3565 题意:给定n个白点的二维坐标,n个黑点的二维坐标. 求 ...
- Poj(3686),最小权匹配,多重匹配,KM
题目链接 The Windy's | Time Limit: 5000MS | Memory Limit: 65536K | | Total Submissions: 4939 | Accepted: ...
随机推荐
- Mybatis批量添加,删除与修改
1.批量添加元素session.insert(String string,object O) public void batchInsertStudent(){ List<Student> ...
- FZU-2271 X(Floyd)
Problem 2271 X Accept: 303 Submit: 1209Time Limit: 1500 mSec Memory Limit : 32768 KB Problem ...
- 最小生成树【p2121】 拆地毯
题目描述--->p2121 拆地毯 分析 这题为什么是最大生成树. 先来bb两句 题目为拆地毯,让我们剩下k个地毯. 题目想要我们求得最大的美丽度. 且要求我们 保留的地毯构成的图中,任意可互相 ...
- 洛谷—— P1869 愚蠢的组合数
https://www.luogu.org/problemnew/show/1869 题目描述 最近老师教了狗狗怎么算组合数,狗狗又想到了一个问题... 狗狗定义C(N,K)表示从N个元素中不重复地选 ...
- Flash3D学习计划(四)——学习纹理相关知识,载入一张纹理,并应用于前面的矩形;并学习多层纹理映射相关知识,尝试dark map, glow map
实现效果 主要代码 package { import com.adobe.utils.AGALMiniAssembler; import com.adobe.utils.Perspective ...
- 墨卡托投影、高斯-克吕格投影、UTM投影及我国分带方法
转自原文 墨卡托投影.高斯-克吕格投影.UTM投影及我国分带方法 一.墨卡托投影.高斯-克吕格投影.UTM投影 1. 墨卡托(Mercator)投影 墨卡托(Mercator)投影,是一种" ...
- JAVA常见算法题(一)
package com.xiaowu.demo; // 有一只兔子,从出生后第3个月起每个月都生一只兔子,小兔子长到第四个月后每个月又生一只兔子,假如兔子都不死,问每个月的兔子总数为多少? /** * ...
- JavaScript indexOf() 方法,获取元素的位置;Object.keys()获取对象的所有key的数组
定义和用法 indexOf() 方法可返回某个指定的字符串值在字符串中首次出现的位置. 语法 stringObject.indexOf(searchvalue,fromindex) 参数 描述 sea ...
- hmac的python实现
Hash-based message authentication code,利用哈希算法,以一个密钥和一个消息为输入,生成一个消息摘要作为输出 可以查看python的内置模块hmac.py的源码来学 ...
- 16个Linux服务器监控命令
在不同的Linux发行版中,会有不同的GUI程序可以显示各种系统信息,比如SUSE linux发行版中,就有非常棒的图形化的配置和管理工具YaST,KDE桌面环境里的KDE System Guard也 ...