【POJ 2400】 Supervisor, Supervisee(KM求最小权匹配)
【POJ 2400】 Supervisor, Supervisee(KM求最小权匹配)
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 2538 | Accepted: 719 |
Description
them in her department (1 being "really want" and N being "really don't want"). In turn, each of the N candidates ranks each of the supervisors as to how much that person would like to work for that supervisor (again, 1 is "really want to work for him/her"
and N is "really don't want to work for him/her"). Given the scores that each supervisor has for each candidate, and the scores each candidate has for each manager, write a computer program to determine the "best match" of candidates to supervisors. The "best
match" is determined by finding the distribution that leads to the highest overall (i.e. sum of) satisfaction for all people. The closer a person is to her number one choice, the better. If everyone gets their number one choice, the average difference will
be 0.
Input
The next line will contain a single integer value N, 0 < N < 15, representing the number of supervisors (and the number of employees - there are N supervisors and N employees). The next N lines will be the preferences of each of the N supervisors. Each line
will contain N integer entries (1 through N for employees 1 through N), each separated by a space character, that represents the preferences of that supervisor from most preferred to least preferred. More specifically, the first entry on the line will represent
that supervisor's first choice, the second entry her second, and so on. The next N lines will be the preferences of the N employees, in the same format as the supervisors.
All lines of data in the input file will end with an empty line.
Output
with 1). On the next N lines, show each supervisor (starting with 1) followed by the employee with which she was matched (1 per line). NOTE: if there is more than one best match, matches should be listed in ascending permuted order (see sample output).
Separate each data set with an empty line.
Sample Input
2
7
1 2 3 4 5 6 7
2 1 3 4 5 6 7
3 1 2 4 5 6 7
4 1 2 3 5 6 7
5 1 2 3 4 6 7
6 1 2 3 4 5 7
7 1 2 3 4 5 6
1 2 3 4 5 6 7
2 1 3 4 5 6 7
3 1 2 4 5 6 7
4 1 2 3 5 6 7
5 1 2 3 4 6 7
6 1 2 3 4 5 7
7 1 2 3 4 5 6 2
1 2
2 1
1 2
1 2
Sample Output
Data Set 1, Best average difference: 0.000000
Best Pairing 1
Supervisor 1 with Employee 1
Supervisor 2 with Employee 2
Supervisor 3 with Employee 3
Supervisor 4 with Employee 4
Supervisor 5 with Employee 5
Supervisor 6 with Employee 6
Supervisor 7 with Employee 7 Data Set 2, Best average difference: 0.250000
Best Pairing 1
Supervisor 1 with Employee 1
Supervisor 2 with Employee 2
Source
题目大意就是n个上司与n名员工。每一个上司相应有想要搭配的员工。相同每一个员工有渴望搭配的上司。
输入第一行为N 之后n行为1~n号上司的期望 从左到右从最好到最差
相同之后n行是1~n号员工
匹配到最渴望的人值为0,否则从左到右一次加1
要求问平均期望的最小值,也就是最小值/2n
最小值用KM最小权匹配计算就可以,因为还要求输出解,有多解则输出多解。所以还要搜一下……
事实上数据非常少。找最小权匹配也用搜的也能够。
。
。
代码例如以下:
#include <iostream>
#include <cmath>
#include <vector>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
#include <list>
#include <algorithm>
#include <map>
#include <set>
#define LL long long
#define fread() freopen("in.in","r",stdin)
#define fwrite() freopen("out.out","w",stdout) using namespace std;
const int INF = 0x3f3f3f3f;
const int msz = 10000;
const double eps = 1e-8; int mp[23][33];
int lx[33],ly[33],link[33],slack[33],next[33];
bool visx[33],visy[33],vis[33];
int n,ans,cnt; bool cal(int x)
{
visx[x] = 1; for(int y = 0; y < n; ++y)
{
if(visy[y]) continue; int t = lx[x]+ly[y]-mp[x][y];
if(t == 0)
{
visy[y] = 1;
if(link[y] == -1 || cal(link[y]))
{
link[y] = x;
return 1;
}
}
else slack[y] = min(slack[y],t);
}
return 0;
} int KM()
{
memset(link,-1,sizeof(link)); for(int i = 0; i < n; ++i)
{
memset(slack,INF,sizeof(slack));
while(1)
{
memset(visx,0,sizeof(visx));
memset(visy,0,sizeof(visy)); if(cal(i)) break; int d = INF;
for(int i = 0; i < n; ++i)
if(!visy[i]) d = min(d,slack[i]); for(int i = 0; i < n; ++i)
if(visx[i]) lx[i] -= d; for(int i = 0; i < n; ++i)
if(visy[i]) ly[i] += d;
else slack[i] -= d;
}
} ans = 0;
for(int i = 0; i < n; ++i)
if(link[i] != -1) ans += mp[link[i]][i]; return -ans;
} void dfs(int id,int hs)
{
if(hs < ans) return;
if(id == n)
{
if(hs == ans)
{
printf("Best Pairing %d\n",++cnt);
for(int i = 0; i < n; ++i)
{
printf("Supervisor %d with Employee %d\n",i+1,next[i]+1);
}
}
return;
} for(int i = 0; i < n; ++i)
{
if(vis[i]) continue;
vis[i] = 1;
next[id] = i;
dfs(id+1,hs+mp[id][i]);
vis[i] = 0;
}
} int main()
{
int t,x;
scanf("%d",&t); for(int z = 1; z <= t; ++z)
{
scanf("%d",&n);
memset(ly,0,sizeof(ly)); for(int i = 0; i < n; ++i)
for(int j = 0; j < n; ++j)
{
scanf("%d",&x);
mp[x-1][i] = -j;
} for(int i = 0; i < n; ++i)
for(int j = 0; j < n; ++j)
{
scanf("%d",&x);
mp[i][x-1] -= j;
if(j == 0) lx[i] = mp[i][x-1];
else lx[i] = max(lx[i],mp[i][x-1]);
} printf("Data Set %d, Best average difference: %.6f\n",z,KM()*0.5/n); cnt = 0;
memset(vis,0,sizeof(vis));
dfs(0,0);
puts("");
} return 0;
}
【POJ 2400】 Supervisor, Supervisee(KM求最小权匹配)的更多相关文章
- poj 2195(KM求最小权匹配)
题目链接:http://poj.org/problem?id=2195 思路:我们都知道KM使用来求最大权匹配的,但如果要求最小权匹配,只需把图中的权值改为负值,求一次KM,然后权值和取反即可. ht ...
- 【POJ 2195】 Going Home(KM算法求最小权匹配)
[POJ 2195] Going Home(KM算法求最小权匹配) Going Home Time Limit: 1000MS Memory Limit: 65536K Total Submiss ...
- POJ 2400 Supervisor, Supervisee(KM二分图最大权值匹配)题解
题意:n个老板n个员工,先给你n*n的数据,i行j列代表第i个老板第j喜欢的员工是谁,再给你n*n的数据,i行j列代表第i个员工第j喜欢的老板是谁,如果匹配到第k喜欢的人就会产生一个分数k-1.现在让 ...
- POJ 2400 Supervisor, Supervisee(KM)
題目鏈接 題意 :N个部门和N个员工,每个部门要雇佣一个工人,部门对每个工人打分,从1~N,1表示很想要,N表示特别不想要,每个工人对部门打分,从1~N.1表示很想去这个部门,N表示特别不想去这个部门 ...
- Fixed Partition Memory Management UVALive - 2238 建图很巧妙 km算法左右顶点个数不等模板以及需要注意的问题 求最小权匹配
/** 题目: Fixed Partition Memory Management UVALive - 2238 链接:https://vjudge.net/problem/UVALive-2238 ...
- poj 3686(拆点+最小权匹配)
题目链接:http://poj.org/problem?id=3686 思路:显然工件为X集,机器为Y集合.由于每个机器一次只能加工一个部件,因此我们可以将一台机器拆成N个点,至于部件与机器之间连多大 ...
- POJ 2400 最小权匹配
吐槽:首先,这道题的输入居然是错的.要将上下两个矩阵的位置换一下才可以出样例,也就是上面那个矩阵是employee对Supervisor的打分,下面那个矩阵才是Supervisor对employee的 ...
- poj3565 Ants km算法求最小权完美匹配,浮点权值
/** 题目:poj3565 Ants km算法求最小权完美匹配,浮点权值. 链接:http://poj.org/problem?id=3565 题意:给定n个白点的二维坐标,n个黑点的二维坐标. 求 ...
- Poj(3686),最小权匹配,多重匹配,KM
题目链接 The Windy's | Time Limit: 5000MS | Memory Limit: 65536K | | Total Submissions: 4939 | Accepted: ...
随机推荐
- Java笔记:JDK安装小问题
昨天在实验室的Windows机器上安JDK,环境变量什么的都配好了,Java -version也没有问题,但是一运行Javac编译就会出现java/lang/NoClassDefFoundError: ...
- JDK内置性能监测工具使用
Java自带的性能监测工具用法简介——jstack.jconsole.jinfo.jmap.jdb.jsta.jvisualvmJDK内置工具使用 一.javah命令(C Header and Stu ...
- [NOIP模拟赛][贪心]奶牛晒衣服.
奶牛晒衣服(dry) [问题描述] 在熊大妈英明的带领下,时针和它的同伴生下了许多牛宝宝.熊大妈决定给每个宝宝都穿上可爱的婴儿装.于是,为牛宝宝洗晒衣服就成了很不爽的事情. 圣人王担负起了这个重任.洗 ...
- 使用Chrome DevTools直接调试Node.js与JavaScript(并行)
Good News: 现在我们可以用浏览器调试node.js了!!! 前提 Node.js 6.3+, 这个可上Node.js官网自行下载: Chrome 55+. 如果您本地的chrome升级到最新 ...
- tiny4412学习之u-boot启动过程
这个文档简要分析了tiny4412自带的u-boot的启动过程,这个u-boot启用了mmu,并且命令的接收和执行方式跟以前的不同. 文档下载地址: http://pan.baidu.com/s/1s ...
- FIREDAC记录SQL日志
FIREDAC记录SQL日志 跟踪SQL日志可以方便开发的时候的程序调试.SQL日志记录会耗费服务费资源,正式部署中间件的时候,建议关闭SQL日志记录. FIREDAC通过使用TFDMoniFlatF ...
- Javascript Apply和Call的使用
Apply Function.apply(obj,args)方法能接收两个参数obj:这个对象将代替Function类里this对象args:这个是数组,它将作为参数传给Function(args-- ...
- ES6方面重点摘要
1.变量声明(1)内层变量覆盖外层变量(即后面的覆盖前面的)(2)循环变量的声明,i值在全局范围内有效,所以最后输出的都是最后一轮i的值(3)let.const的引入,为JS增加了块级作用域的概念(c ...
- ElasticSearch refresh API
在 Elasticsearch 中,写入和打开一个新段的轻量的过程叫做 refresh . 默认情况下每个分片会每秒自动刷新一次.这就是为什么我们说 Elasticsearch 是 近 实时搜索: 文 ...
- 前端存储之Web Sql Database
前言 在上一篇前端存储之indexedDB中说到,我们项目组要搞一个前后端分离的项目,要求在前端实现存储,我们首先找到了indexedDB,而我们研究了一段时间的indexedDB后,发现它并不是很适 ...