【POJ 2400】 Supervisor, Supervisee(KM求最小权匹配)
【POJ 2400】 Supervisor, Supervisee(KM求最小权匹配)
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 2538 | Accepted: 719 |
Description
them in her department (1 being "really want" and N being "really don't want"). In turn, each of the N candidates ranks each of the supervisors as to how much that person would like to work for that supervisor (again, 1 is "really want to work for him/her"
and N is "really don't want to work for him/her"). Given the scores that each supervisor has for each candidate, and the scores each candidate has for each manager, write a computer program to determine the "best match" of candidates to supervisors. The "best
match" is determined by finding the distribution that leads to the highest overall (i.e. sum of) satisfaction for all people. The closer a person is to her number one choice, the better. If everyone gets their number one choice, the average difference will
be 0.
Input
The next line will contain a single integer value N, 0 < N < 15, representing the number of supervisors (and the number of employees - there are N supervisors and N employees). The next N lines will be the preferences of each of the N supervisors. Each line
will contain N integer entries (1 through N for employees 1 through N), each separated by a space character, that represents the preferences of that supervisor from most preferred to least preferred. More specifically, the first entry on the line will represent
that supervisor's first choice, the second entry her second, and so on. The next N lines will be the preferences of the N employees, in the same format as the supervisors.
All lines of data in the input file will end with an empty line.
Output
with 1). On the next N lines, show each supervisor (starting with 1) followed by the employee with which she was matched (1 per line). NOTE: if there is more than one best match, matches should be listed in ascending permuted order (see sample output).
Separate each data set with an empty line.
Sample Input
2
7
1 2 3 4 5 6 7
2 1 3 4 5 6 7
3 1 2 4 5 6 7
4 1 2 3 5 6 7
5 1 2 3 4 6 7
6 1 2 3 4 5 7
7 1 2 3 4 5 6
1 2 3 4 5 6 7
2 1 3 4 5 6 7
3 1 2 4 5 6 7
4 1 2 3 5 6 7
5 1 2 3 4 6 7
6 1 2 3 4 5 7
7 1 2 3 4 5 6 2
1 2
2 1
1 2
1 2
Sample Output
Data Set 1, Best average difference: 0.000000
Best Pairing 1
Supervisor 1 with Employee 1
Supervisor 2 with Employee 2
Supervisor 3 with Employee 3
Supervisor 4 with Employee 4
Supervisor 5 with Employee 5
Supervisor 6 with Employee 6
Supervisor 7 with Employee 7 Data Set 2, Best average difference: 0.250000
Best Pairing 1
Supervisor 1 with Employee 1
Supervisor 2 with Employee 2
Source
题目大意就是n个上司与n名员工。每一个上司相应有想要搭配的员工。相同每一个员工有渴望搭配的上司。
输入第一行为N 之后n行为1~n号上司的期望 从左到右从最好到最差
相同之后n行是1~n号员工
匹配到最渴望的人值为0,否则从左到右一次加1
要求问平均期望的最小值,也就是最小值/2n
最小值用KM最小权匹配计算就可以,因为还要求输出解,有多解则输出多解。所以还要搜一下……
事实上数据非常少。找最小权匹配也用搜的也能够。
。
。
代码例如以下:
#include <iostream>
#include <cmath>
#include <vector>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
#include <list>
#include <algorithm>
#include <map>
#include <set>
#define LL long long
#define fread() freopen("in.in","r",stdin)
#define fwrite() freopen("out.out","w",stdout) using namespace std;
const int INF = 0x3f3f3f3f;
const int msz = 10000;
const double eps = 1e-8; int mp[23][33];
int lx[33],ly[33],link[33],slack[33],next[33];
bool visx[33],visy[33],vis[33];
int n,ans,cnt; bool cal(int x)
{
visx[x] = 1; for(int y = 0; y < n; ++y)
{
if(visy[y]) continue; int t = lx[x]+ly[y]-mp[x][y];
if(t == 0)
{
visy[y] = 1;
if(link[y] == -1 || cal(link[y]))
{
link[y] = x;
return 1;
}
}
else slack[y] = min(slack[y],t);
}
return 0;
} int KM()
{
memset(link,-1,sizeof(link)); for(int i = 0; i < n; ++i)
{
memset(slack,INF,sizeof(slack));
while(1)
{
memset(visx,0,sizeof(visx));
memset(visy,0,sizeof(visy)); if(cal(i)) break; int d = INF;
for(int i = 0; i < n; ++i)
if(!visy[i]) d = min(d,slack[i]); for(int i = 0; i < n; ++i)
if(visx[i]) lx[i] -= d; for(int i = 0; i < n; ++i)
if(visy[i]) ly[i] += d;
else slack[i] -= d;
}
} ans = 0;
for(int i = 0; i < n; ++i)
if(link[i] != -1) ans += mp[link[i]][i]; return -ans;
} void dfs(int id,int hs)
{
if(hs < ans) return;
if(id == n)
{
if(hs == ans)
{
printf("Best Pairing %d\n",++cnt);
for(int i = 0; i < n; ++i)
{
printf("Supervisor %d with Employee %d\n",i+1,next[i]+1);
}
}
return;
} for(int i = 0; i < n; ++i)
{
if(vis[i]) continue;
vis[i] = 1;
next[id] = i;
dfs(id+1,hs+mp[id][i]);
vis[i] = 0;
}
} int main()
{
int t,x;
scanf("%d",&t); for(int z = 1; z <= t; ++z)
{
scanf("%d",&n);
memset(ly,0,sizeof(ly)); for(int i = 0; i < n; ++i)
for(int j = 0; j < n; ++j)
{
scanf("%d",&x);
mp[x-1][i] = -j;
} for(int i = 0; i < n; ++i)
for(int j = 0; j < n; ++j)
{
scanf("%d",&x);
mp[i][x-1] -= j;
if(j == 0) lx[i] = mp[i][x-1];
else lx[i] = max(lx[i],mp[i][x-1]);
} printf("Data Set %d, Best average difference: %.6f\n",z,KM()*0.5/n); cnt = 0;
memset(vis,0,sizeof(vis));
dfs(0,0);
puts("");
} return 0;
}
【POJ 2400】 Supervisor, Supervisee(KM求最小权匹配)的更多相关文章
- poj 2195(KM求最小权匹配)
题目链接:http://poj.org/problem?id=2195 思路:我们都知道KM使用来求最大权匹配的,但如果要求最小权匹配,只需把图中的权值改为负值,求一次KM,然后权值和取反即可. ht ...
- 【POJ 2195】 Going Home(KM算法求最小权匹配)
[POJ 2195] Going Home(KM算法求最小权匹配) Going Home Time Limit: 1000MS Memory Limit: 65536K Total Submiss ...
- POJ 2400 Supervisor, Supervisee(KM二分图最大权值匹配)题解
题意:n个老板n个员工,先给你n*n的数据,i行j列代表第i个老板第j喜欢的员工是谁,再给你n*n的数据,i行j列代表第i个员工第j喜欢的老板是谁,如果匹配到第k喜欢的人就会产生一个分数k-1.现在让 ...
- POJ 2400 Supervisor, Supervisee(KM)
題目鏈接 題意 :N个部门和N个员工,每个部门要雇佣一个工人,部门对每个工人打分,从1~N,1表示很想要,N表示特别不想要,每个工人对部门打分,从1~N.1表示很想去这个部门,N表示特别不想去这个部门 ...
- Fixed Partition Memory Management UVALive - 2238 建图很巧妙 km算法左右顶点个数不等模板以及需要注意的问题 求最小权匹配
/** 题目: Fixed Partition Memory Management UVALive - 2238 链接:https://vjudge.net/problem/UVALive-2238 ...
- poj 3686(拆点+最小权匹配)
题目链接:http://poj.org/problem?id=3686 思路:显然工件为X集,机器为Y集合.由于每个机器一次只能加工一个部件,因此我们可以将一台机器拆成N个点,至于部件与机器之间连多大 ...
- POJ 2400 最小权匹配
吐槽:首先,这道题的输入居然是错的.要将上下两个矩阵的位置换一下才可以出样例,也就是上面那个矩阵是employee对Supervisor的打分,下面那个矩阵才是Supervisor对employee的 ...
- poj3565 Ants km算法求最小权完美匹配,浮点权值
/** 题目:poj3565 Ants km算法求最小权完美匹配,浮点权值. 链接:http://poj.org/problem?id=3565 题意:给定n个白点的二维坐标,n个黑点的二维坐标. 求 ...
- Poj(3686),最小权匹配,多重匹配,KM
题目链接 The Windy's | Time Limit: 5000MS | Memory Limit: 65536K | | Total Submissions: 4939 | Accepted: ...
随机推荐
- J.U.C并发框架源码阅读(十一)DelayQueue
基于版本jdk1.7.0_80 java.util.concurrent.DelayQueue 代码如下 /* * ORACLE PROPRIETARY/CONFIDENTIAL. Use is su ...
- (31)C#时间
一. DateTime dt = DateTime.Now 对象 1.获取当前时间 Console.WriteLine(dt.Year+"年"); //当前年份 Console.W ...
- 20170416郑州市轻工业学院ACM校赛
这是个星期天,但是,这种非一线城市,重点城市什么的高中,放假从来不按套路出牌,几乎可以说能给你一天是福气.当然,比县里好的多,问在县里上高中的初中同学,放假更是比我们一天里的午休+晚上吃饭时间还要少. ...
- 使用 SQL Server 的 uniqueidentifier 字段类型
原文:使用 SQL Server 的 uniqueidentifier 字段类型 SQL Server 自 2008 版起引入了 uniqueidentifier 字段,它存储的是一个 UUID, 或 ...
- 利用mkfs.ubifs和ubinize两个工具制作UBI镜像
转:http://blog.sina.com.cn/s/blog_9452251d01015z9h.html 有了mkfs.ubifs和ubinize两个工具后,就可以制作UBIFS镜像了,具体步骤如 ...
- source insight研究——快捷键篇
转:http://blog.csdn.net/ison81/article/details/3510426 关于键盘和鼠标谁更快捷之争,是一个永远被程序员争论的话题.我想大多数人都不会极端的信奉一种操 ...
- Android AIDL实例解析
AIDL这项技术在我们的开发中一般来说并不是很常用,虽然自己也使用新浪微博的SSO登录,其原理就是使用AIDL,但是自己一直没有动手完整的写过AIDL的例子,所以就有了这篇简单的文章. AIDL(An ...
- JAVA常见算法题(十八)
package com.xiaowu.demo; /** * 两个乒乓球队进行比赛,各出三人.甲队为a,b,c三人,乙队为x,y,z三人,以抽签决定比赛名单. 有人向队员打听比赛的名单:a说他不和x比 ...
- DotnetBrowser高级教程-(5)使用内置的MVC UI框架-EasyMvc
如果DotnetBrowser只是实现了内置chrome浏览器和web/web socket server,似乎还不是很完美.因此,最新的DotnetBrowser已经内置对easy mvc控件的支持 ...
- solr 常用命令
1.启动和关闭 a.启动和重启 启动和重启命令有很多选项让你运行在SolrCloud模式,使用示例配置,以hostname为开头或者非默认端口,指向本地ZooKeeper. bin/solr star ...