Problem Description
The so-called best problem solver can easily solve this problem, with his/her childhood sweetheart.

It is known that y=(5+2√6)^(1+2^x).
For a given integer x (0≤x<2^32) and a given prime number M (M≤46337) , print [y]%M . ([y] means the integer part of y )

 
Input
An integer T (1<T≤1000) , indicating there are T test cases.
Following are T lines, each containing two integers x and M , as introduced above.
 
Output
The output contains exactly T lines.
Each line contains an integer representing [y]%M .
 
Sample Input
7
0 46337
1 46337
3 46337
1 46337
21 46337
321 46337
4321 46337
 
Sample Output
Case #1: 97
Case #2: 969
Case #3: 16537
Case #4: 969
Case #5: 40453
Case #6: 10211
Case #7: 17947

题目大意就是求那个式子y=(5+2√6)^(1+2^x)。

考虑(5+2√6)^n和(5-2√6)^n;

分别设为A和B,

自然A*B=1

考虑A+B,发现奇数次幂的根号消掉了,于是是个整数。

由因为A>1,自然B<1所以说A的小数部分就是1-B,所以A的整数部分就是A+B-1。

于是就是求A+B,便能得到结果。

而这个式子跟特征根求解的一次线性递推式的结果很像。

于是考虑x^2+bx+c=0这个特征方程,跟为5+2√6和5-2√6。

得b=-10,c=1。

于是递推式为f(n+2)=10f(n+1)-f(n)。

然后本地打表发现,不管模范围内的任何素数,这个序列的循环节都不是很大。

于是考虑直接暴力循环节,不过记忆化下来。

然后就是考虑2^x模循环节的结果即可,这个用快速幂。

复杂度是O(r+logx),其中r为循环节大小。

题解中通过结论 (p^2- p)(p^2-1)为循环节使用矩阵快速幂.

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <string>
#define LL long long using namespace std; const int maxM = ;
int x, m, r[maxM], f[maxM]; void init()
{
if (r[m] != -)
return;
f[] = %m;
f[] = %m;
for (int i = ;; ++i)
{
f[i] = ((*f[i-]-f[i-])%m+m)%m;
if (f[i-] == f[] && f[i] == f[])
{
r[m] = i-;
break;
}
}
} //快速幂m^n
int quickPow(LL x, int n, int mm)
{
int a = ;
while (n)
{
a *= n& ? x : ;
a %= mm;
n >>= ;
x *= x;
x %= mm;
}
return a;
} void work()
{
int k, ans;
k = quickPow(, x, r[m]);
k = (k+)%r[m];
f[] = %m;
f[] = %m;
for (int i = ; i <= k; ++i)
f[i] = ((*f[i-]-f[i-])%m+m)%m;
ans = (f[k]-+m)%m;
printf("%d\n", ans);
} int main()
{
//freopen("test.in", "r", stdin);
memset(r, -, sizeof(r));
int T;
scanf("%d", &T);
for (int times = ; times < T; ++times)
{
printf("Case #%d: ", times+);
scanf("%d%d", &x, &m);
init();
work();
}
return ;
}

ACM学习历程—HDU 5451 Best Solver(Fibonacci数列 && 快速幂)(2015沈阳网赛1002题)的更多相关文章

  1. ACM学习历程—HDU 5459 Jesus Is Here(递推)(2015沈阳网赛1010题)

    Sample Input 9 5 6 7 8 113 1205 199312 199401 201314 Sample Output Case #1: 5 Case #2: 16 Case #3: 8 ...

  2. ACM学习历程—HDU5475 An easy problem(线段树)(2015上海网赛08题)

    Problem Description One day, a useless calculator was being built by Kuros. Let's assume that number ...

  3. ACM学习历程——HDU 5014 Number Sequence (贪心)(2014西安网赛)

    Description There is a special number sequence which has n+1 integers. For each number in sequence, ...

  4. ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...

  5. ACM学习历程—HDU5490 Simple Matrix (数学 && 逆元 && 快速幂) (2015合肥网赛07)

    Problem Description As we know, sequence in the form of an=a1+(n−1)d is called arithmetic progressio ...

  6. hdu 5455 (2015沈阳网赛 简单题) Fang Fang

    题目;http://acm.hdu.edu.cn/showproblem.php?pid=5455 题意就是找出所给字符串有多少个满足题目所给条件的子串,重复的也算,坑点是如果有c,f以外的字符也是不 ...

  7. ACM学习历程—Codeforces 446C DZY Loves Fibonacci Numbers(线段树 && 数论)

    Description In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence ...

  8. HDU 5451 Best Solver 数论 快速幂 2015沈阳icpc

    Best Solver Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 65535/102400 K (Java/Others)Tota ...

  9. ACM学习历程—HDU 5512 Pagodas(数学)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5512 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是给了初始的集合{a, b},然后取集合里 ...

随机推荐

  1. static全局变量与普通的全局变量有什么区别?static局部变量和普通局部变量有什么区别?static函数与普通函数有什么区别?

    答案:全局变量(外部变量)的说明之前再冠以static 就构成了静态的全局变量.全局变量本身就是静态存储方式,静态全局变量当然也是静态存储方式. 这两者在存储方式上并无不同.这两者的区别虽在于非静态全 ...

  2. 【BZOJ2780】[Spoj]8093 Sevenk Love Oimaster 广义后缀自动机

    [BZOJ2780][Spoj]8093 Sevenk Love Oimaster Description Oimaster and sevenk love each other.     But r ...

  3. 大数据学习系列(5)-- 局域网yum仓库搭建

    https://www.cnblogs.com/nulige/p/6081192.html

  4. Eclipse 中svn的合并与同步

    Eclipse 中svn的合并与同步: 1.  从主干拉取到分支: 然后一直下一步,到完成就OK了. 2.  从分支代码合并到主干: 2.1.先将本地需要提交更新的代码提交更新到svn分支去 2.2. ...

  5. [postfix]添加黑名单

    最近公司员工的邮箱总是收到twoomail.com的邀请邮件,邮箱服务器还没有添加过黑名单呢,就拿它开刀吧. 在主配置文件中添加如下配置 #vi /etc/postfix/main.cf #black ...

  6. ElasticSearch(二十一)正排和倒排索引

    1.区别 搜索的时候,要依靠倒排索引:排序的时候,需要依靠正排索引,看到每个document的每个field,然后进行排序,所谓的正排索引,其实就是doc values 在建立索引的时候,一方面会建立 ...

  7. Delphi窗体研究,留个爪,以后回来研究

    Delphi - 窗体创建过程   来自大富翁. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 ...

  8. KVM虚拟化技术实战全过程

    今天准备开始.................... centos安装-kvm 教程: http://www.linuxidc.com/Linux/2017-01/140007.htm http:// ...

  9. 快照COW

    What is Copy-on-write? Copy-on-write      Copy-on-write (sometimes referred to as "COW") i ...

  10. sublime 添加 ctags 实现代码跳转

    ctags -R -f .tags生成  .tags文件