【洛谷P3390】矩阵快速幂
矩阵快速幂
矩阵乘法:
A[n*m]*B[m*k]=C[n*k];
C[i][j]=sum(A[i][1~n]+B[1~n][j])
为了便于赋值和定义,我们定义一个结构体储存矩阵:
struct Matrix{
long long m[][];
};
X*Y:
Matrix cheng(Matrix X,Matrix Y)
{
Matrix C;
for(long long i=;i<=n;i++)
for(long long j=;j<=n;j++)
{
C.m[i][j]=;
for(long long l=;l<=n;l++)
C.m[i][j]=(C.m[i][j]+X.m[i][l]*Y.m[l][j])%MOD;
}
return C;
}
快速幂:
把k转化为二进制,
如k=10(10)=1010(2);
a^10=a^(2^3) * a^(2^1)=(a^8)*(a^2)
代码:
Matrix qsort(Matrix X,long long p)
{
Matrix S=E;
while(p)
{
if(p&) S=cheng(S,X);
X=cheng(X,X);
p>>=;
}
return S;
}
其中E是一个矩阵,相当于数字1,任何一个矩阵A*E=A。
当n=10时,E等于
1,0,0,0,0,0,0,0,0,0
0,1,0,0,0,0,0,0,0,0
0,0,1,0,0,0,0,0,0,0
0,0,0,1,0,0,0,0,0,0
0,0,0,0,1,0,0,0,0,0
0,0,0,0,0,1,0,0,0,0
0,0,0,0,0,0,1,0,0,0
0,0,0,0,0,0,0,1,0,0
0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,0,1
生成矩阵E:
for(long long i=;i<=n;i++)
E.m[i][i]=;
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
long long n,k;
const long long MOD=;
struct Matrix{
long long m[][];
};
Matrix A,E,ANS;
Matrix cheng(Matrix X,Matrix Y)
{
Matrix C;
for(long long i=;i<=n;i++)
for(long long j=;j<=n;j++)
{
C.m[i][j]=;
for(long long l=;l<=n;l++)
C.m[i][j]=(C.m[i][j]+(X.m[i][l]*Y.m[l][j]))%MOD;
}
return C;
}
Matrix qsort(Matrix X,long long p)
{
Matrix S=E;
while(p)
{
if(p&) S=cheng(S,X);
X=cheng(X,X);
p>>=;
}
return S;
}
int main()
{
scanf("%lld%lld",&n,&k);
for(long long i=;i<=n;i++)
E.m[i][i]=;
for(long long i=;i<=n;i++)
for(long long j=;j<=n;j++)
scanf("%lld",&A.m[i][j]);
ANS=qsort(A,k);
for(long long i=;i<=n;i++)
{
for(long long j=;j<=n;j++)
printf("%lld ",ANS.m[i][j]);
puts("");
}
return ;
}
【洛谷P3390】矩阵快速幂的更多相关文章
- P3390矩阵快速幂
题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...
- 【luogu P3390 矩阵快速幂】 模板
题目链接:https://www.luogu.org/problemnew/show/P3390 首先要明白矩阵乘法是什么 对于矩阵A m*p 与 B p*n 的矩阵 得到C m*n 的矩阵 矩阵 ...
- 【洛谷】P1229快速幂
题目链接:https://www.luogu.org/problemnew/show/P1226 题意:求b^p % m之后的结果 题解:快速幂模板 代码: #include<iostream& ...
- 模板【洛谷P3390】 【模板】矩阵快速幂
P3390 [模板]矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 矩阵A的大小为n×m,B的大小为n×k,设C=A×B 则\(C_{i,j}=\sum\limits_{k=1}^{n}A_{i, ...
- 洛谷P3758/BZOJ4887 [TJOI2017] 可乐 [矩阵快速幂]
洛谷传送门,BZOJ传送门 可乐 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 299 Solved: 207 Description 加里敦星球的人 ...
- 【模板】矩阵快速幂 洛谷P2233 [HNOI2002]公交车路线
P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另 ...
- 3990 [模板]矩阵快速幂 洛谷luogu
题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...
- 洛谷P1349 广义斐波那契数列(矩阵快速幂)
P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
随机推荐
- 时间比较早晚java
package demo; import java.text.SimpleDateFormat;import java.util.Date;import java.util.Locale; publi ...
- CAD安装失败怎样卸载CAD 2017?错误提示某些产品无法安装
AUTODESK系列软件着实令人头疼,安装失败之后不能完全卸载!!!(比如maya,cad,3dsmax等).有时手动删除注册表重装之后还是会出现各种问题,每个版本的C++Runtime和.NET f ...
- linux开机挂载磁盘
1. [root@localhost master-build]# cat /etc/fstab # # /etc/fstab # Created by anaconda on Thu Aug :: ...
- webview的进度条的加载,webview的使用以及handle的理解与使用
Webview的几个关键方法要介绍一些: 谷歌官方文档是这么说的; A WebView has several customization points where you can add your ...
- Git常用配置
Git设置默认用户名和密码 1.进入C:\users\Administrator目录下,通过git bash终端输入touch .git-credentials后回车2.打开生成的.git-crede ...
- eclipse启动的时候报错An internal error occurred during: "Initializing Java Tooling"
eclipse ->windows ->Perspactive -> Reset perspactive 重置视图可以解决
- [Android]apk反编译方法
在学习Android开发的过程你,你往往会想去学习别人的apk是怎么开发的,作为一个开发者,你可能会很想知道这些效果界面是怎么去实现的,这时,你便可以对改应用的APK进行反编译查看.下面是我参考了一些 ...
- ETL模型设计
传统的关系数据库一般采用二维数表的形式来表示数据,一个维是行,另一个维是列,行和列的交叉处就是数据元素.关系数据的基础是关系数据库模型,通过标准的SQL语言来加以实现. 数据仓库是多维数据库,它扩展了 ...
- php-fpm 进程在云服务器cpu分配不均匀
8核的云服务器,开了200个php-fpm进程,用top命令查看 大部分进程都在cpu 0 上跑着,导致其他cpu 负载很低,cpu分配不均匀: 使用shell 解决问题: 列出所有php-fpm ...
- eleme 项目使用到的库
探索eleme用到的库 xml re库 通过regex = re.compile(pattern)返回一个pattern对象, 通过该对象匹配正则表达式的字符串, 最好在模式中使用r'some'原始字 ...