题面

洛谷

\(\sigma_0(i)\) 表示\(i\) 的约数个数

求\(S_k(n)=\sum_{i=1}^n\sigma_0(i^k)\mod 2^{64}\)

多测,\(T\le10^4,n,k\le10^{10}\)

题解

令\(f(i)=\sigma_0(i^k)\)首先可以发现几个性质

\[f(1)=1
\]

\[f(p)=k+1
\]

\[f(p^c)=kc+1
\]

\[f(ab)=f(a)f(b),\gcd(a,b)=1
\]

也就是说\(f\)是个积性函数,直接上\(Min\_25\)筛就行了

然后把本题里的\(k\)改成\(2\)和\(3\)就可以水过\(DIVCNT2\)\(DIVCNT3\)

//minamoto
#include<bits/stdc++.h>
#define R register
#define ll unsigned long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
ll read(){
R ll res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R ll x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=1e5+5;
bitset<N>vis;int p[N],id1[N],id2[N],sqr,m;
ll n,k,lim,tot,w[N<<1],sp[N],g[N<<1],h[N<<1];
void init(int n){
fp(i,2,n){
if(!vis[i])p[++tot]=i;
for(R int j=1;j<=tot&&1ll*i*p[j]<=n;++j){
vis[i*p[j]]=1;
if(i%p[j]==0)break;
}
}lim=tot;
}
ll S(ll x,int y){
if(x<=1||p[y]>x)return 0;
int id=(x<=sqr)?id1[x]:id2[n/x];
ll res=g[id]+h[id]-(k+1)*(y-1);
for(int i=y;i<=tot&&1ll*p[i]*p[i]<=x;++i){
ll tmp=p[i];
for(R int e=1;tmp*p[i]<=x;tmp*=p[i],++e){
id=(x/tmp<=sqr)?id1[x/tmp]:id2[n/(x/tmp)];
res+=S(x/tmp,i+1)*(k*e+1)+k*(e+1)+1;
}
}
return res;
}
void solve(){
n=read(),k=read(),sqr=sqrt(n),m=0;
tot=upper_bound(p+1,p+1+lim,sqr)-p-1;
for(R ll i=1,j;i<=n;i=j+1){
j=n/(n/i),w[++m]=n/i;
w[m]<=sqr?id1[w[m]]=m:id2[n/w[m]]=m;
g[m]=(w[m]-1)*k;
h[m]=(w[m]-1);
}
fp(j,1,tot)for(R int i=1;1ll*p[j]*p[j]<=w[i];++i){
int id=(w[i]/p[j]<=sqr)?id1[w[i]/p[j]]:id2[n/(w[i]/p[j])];
g[i]-=g[id]-(j-1)*k;
h[i]-=h[id]-(j-1);
}
print(S(n,1)+1);
}
int main(){
// freopen("testdata.in","r",stdin);
init(N-5);
int T=read();
while(T--)solve();
return Ot(),0;
}

SP34096 DIVCNTK - Counting Divisors (general)(Min_25筛)的更多相关文章

  1. SP34096 【DIVCNTK - Counting Divisors (general)】

    题目 求 \[\sum_{i=1}^n \sigma(i^k)\] 我们先来设一个函数\(f(i)=\sigma(i^k)\) 根据约数个数定理 \[f(p)=\sigma(p^k)=k+1\] \[ ...

  2. hdu 6069 Counting divisors 公式+区间筛

    比赛的时候把公式扣出来了,,但是没有想到用筛法算公因子,,默默学习一下.. 题解:设n=p1^(c1)p2^{c2}...pm^{cm},n=p​1^​c​1*​​​​p​2​^c​2​​​​...p ...

  3. [SPOJ20174]DIVCNT3 - Counting Divisors (cube):Min_25筛

    分析 首先,STO ywy OTZ,ywy TQL%%%! 说一下这道题用min_25筛怎么做. 容易发现,对于所有质数\(p\),都满足\(f(p)=4\),于是我们就可以直接通过\([1,x]\) ...

  4. 【SPOJ】DIVCNTK min_25筛

    题目大意 给你 \(n,k\),求 \[ S_k(n)=\sum_{i=1}^n\sigma_0(i^k) \] 对 \(2^{64}\) 取模. 题解 一个min_25筛模板题. 令 \(f(n)= ...

  5. DIVCNT2&&3 - Counting Divisors

    DIVCNT2 - Counting Divisors (square) DIVCNT3 - Counting Divisors (cube) 杜教筛 [学习笔记]杜教筛 (其实不算是杜教筛,类似杜教 ...

  6. Min_25 筛小结

    Min_25 筛这个东西,完全理解花了我很长的时间,所以写点东西来记录一些自己的理解. 它能做什么 对于某个数论函数 \(f\),如果满足以下几个条件,那么它就可以用 Min_25 筛来快速求出这个函 ...

  7. 2017 Multi-University Training Contest - Team 4 hdu6069 Counting Divisors

    地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6069 题目: Counting Divisors Time Limit: 10000/5000 ...

  8. hdu6069 Counting Divisors 晒区间素数

    /** 题目:hdu6069 Counting Divisors 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6069 题意:求[l,r]内所有数的k次方 ...

  9. [SPOJ] DIVCNT2 - Counting Divisors (square) (平方的约数个数前缀和 容斥 卡常)

    题目 vjudge URL:Counting Divisors (square) Let σ0(n)\sigma_0(n)σ0​(n) be the number of positive diviso ...

随机推荐

  1. Oracle之into

    ), NVL() INTO SALE_ID, STORE_ID FROM SALEFROMSTORE WHERE ORDERID = IN_ORDER_ID; 这里要注意,into的时候是一个sele ...

  2. java代码异常处理篇-----循环

    总结:注意一个方法:nextLine();它表示:执行当前行,返回跳过的输入信息. package com.da; import java.util.InputMismatchException; i ...

  3. Java-API-POI-Excel:XSSFWorkbook Documentation

    ylbtech-Java-API-POI:XSSFWorkbook Documentation 1.返回顶部 1. org.apache.poi.xssf.usermodel Class XSSFWo ...

  4. Oracle RMAN 学习:恢复

    Oracle RMAN 学习:恢复 6 rman恢复 Rman中的恢复对应restore,recover Restore,数据修复,利用备份集的数据文件来替换已损坏的数据文件或将其恢复到另外一个位置, ...

  5. SpringMVC 之URL请求到Action的映射(1)

    URL路径映射 1.1.对一个action配置多个URL映射: @RequestMapping(value={"/index", "/hello"}, meth ...

  6. 11-09SQLserver 基础-数据库之汇总练习45题

    设有一数据库,包括四个表:学生表(Student).课程表(Course).成绩表(Score)以及教师信息表(Teacher).四个表的结构分别如表1-1的表(一)~表(四)所示,数据如表1-2的表 ...

  7. js正则基础总结和工作中常用验证规则

    知识是需要系统的.就像js正则用了那么多次,却还是浑浑噩噩,迫切需要来一次整理,那么来吧! 基本知识 元字符 \d 匹配数字等于[0-9] \w 匹配字母.数字.下划线.中文 \s 匹配任意空白字符 ...

  8. cookie禁用后重定向跳转时session的跟踪

  9. sg值的求解(NIM)

    硬币游戏2 挑战程序设计竞赛P315 1堆的情况: #include<bits/stdc++.h> ,grundy[],k=,A[]={,},n=; using namespace std ...

  10. CentOS7下安装pip和pip3

    1.首先检查linux有没有安装python-pip包,直接执行 yum install python-pip 2.没有python-pip包就执行命令 yum -y install epel-rel ...