【bzoj4403】【序列统计】不降转升+组合数添项合并
(上不了p站我要死了,侵权度娘背锅)
Description
给定三个正整数N、L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量。输出答案对10^6+3取模的结果。
Input
输入第一行包含一个整数T,表示数据组数。
第2到第T+1行每行包含三个整数N、L和R,N、L和R的意义如题所述。
1≤N,L,R≤10^9,1≤T≤100,输入数据保证L≤R。
Output
输出包含T行,每行有一个数字,表示你所求出的答案对10^6+3取模的结果。
Sample Input
2
1 4 5
2 4 5
Sample Output
2
5
//【样例说明】满足条件的2个序列为[4]和[5]。
好吧。。。我自己根本想不出来
如果单调不降难以求出来,而单调上升很容易求出来,那么为什么不把单调不降转为单调上升呢?
把第i位加上i,于是就将问题转为了在[l+1,r+n]中选n个不同的数出来,按从小到大的顺序排列。方案数为C(r-l+n,n)。
然后要求长度为1~n的方案数
全部列出来:
很是巧妙啊
组合数中的添项拆项(C(n,1)=C(n,n)=1)化项(C(n,n)=C(n+1,n+1))的运用,通常都是向递推式C(n,m)=C(n-1,m)+C(n-1,m-1)看齐。
代码(记得处理负数)
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#ifdef WIN32
#define RIN "%I64d"
#else
#define RIN "%lld"
#endif
#define ll long long
template <typename T>inline void read(T &res){
T k=1,x=0;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-')k=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
res=k*x;
}
const ll mod=1e6+3;
ll jiec[mod+7],niy[mod+7];
ll n,l,r;
void exgcd(ll a,ll b,ll &x,ll &y){
if(b==0){
x=1,y=0;
return ;
}
ll x0,y0;
exgcd(b,a%b,x0,y0);
x=y0;
y=x0-(a/b)*y0;
}
ll inverse(ll a){
ll x,y;
exgcd(a,mod,x,y);
return (x%mod+mod)%mod;
}
void init(){
jiec[0]=niy[0]=1;
for(int i=1;i<mod;i++) jiec[i]=jiec[i-1]*i%mod;
niy[mod-1]=inverse(jiec[mod-1]);
for(int i=mod-2;i>=1;i--) niy[i]=niy[i+1]*(i+1)%mod;
}
ll comb(ll a,ll b){
return jiec[a]*niy[b]%mod*niy[a-b]%mod;
}
ll lucas(ll a,ll b){
if(a<b) return 0;
if(a==0&&b==0) return 1;
if(a<mod&&b<mod) return comb(a,b);
return lucas(a/mod,b/mod)*lucas(a%mod,b%mod)%mod;
}
void solve(){
read(n),read(l),read(r);
printf(RIN"\n",(lucas(r-l+n+1,n)-1+mod)%mod);
}
int main(){
init();
int t;
read(t);
while(t--) solve();
return 0;
}
【bzoj4403】【序列统计】不降转升+组合数添项合并的更多相关文章
- BZOJ4403 序列统计—Lucas你好
绝对是全网写的最详细的一篇题解 题目:序列统计 代码难度:简单 思维难度:提高+-省选 讲下题面:给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案 ...
- BZOJ4403: 序列统计【lucas定理+组合数学】
Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第一行包含一个整数T,表示数据组 ...
- 2018.09.09 bzoj4403: 序列统计(Lucas定理)
传送门 感觉单调不降序列什么的不好做啊. 于是我们序列中下标为i的元素的值加上i,这样就构成了一个单调递增的序列. 问题就变成了: 求出构造长度分别为1 ~ n且每个元素的值在l+1 ~ r+n之间的 ...
- bzoj4403 序列统计——组合数学
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4403 一开始想了个 O(n) 的做法,不行啊... O(n)想法是这样的:先考虑递推,设 f ...
- bzoj4403: 序列统计
我们很容易发现答案是C(R-L+N+1,N)-1 然后用一下lucas定理就行了 #include <iostream> #include <cstdio> #include ...
- 【BZOJ4403】序列统计(组合数学,卢卡斯定理)
[BZOJ4403]序列统计(组合数学,卢卡斯定理) 题面 Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取 ...
- 【BZOJ4403】序列统计 Lucas定理
[BZOJ4403]序列统计 Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第 ...
- Bzoj 4403: 序列统计 Lucas定理,组合数学,数论
4403: 序列统计 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 328 Solved: 162[Submit][Status][Discuss] ...
- [SDOI2015]序列统计
[SDOI2015]序列统计 标签: NTT 快速幂 Description 给你一个模m意义下的数集,需要用这个数集生成一个数列,使得这个数列在的乘积为x. 问方案数模\(1004535809\). ...
随机推荐
- NBA投篮
D 辅助插件:原生 游戏制作难度系数:初级 游戏教程网址:http://www.raywenderlich.com/20333/beginning-unity-3d-for-ios-part-1 1. ...
- 求:斐波那契数列的第n项
def he (n): if n < 3 : return 1 return he(n-1)+he(n-2)print(he(n))
- Python全栈工程师(包、模块 的导入)
ParisGabriel 每天坚持手写 一天一篇 决定坚持几年 为了梦想 为了信仰 Python人工智能从入门到精通 $ pip3 install tenso ...
- Ubuntu16.04 问题汇总
Ubuntu16.04安装wps并解决系统缺失字体问题 http://www.cnblogs.com/liutongqing/p/6388160.html
- HDU 3957 Street Fighter (最小支配集 DLX 重复覆盖+精确覆盖 )
DLX经典题型,被虐惨了…… 建一个2*N行3*N列的矩阵,行代表选择,列代表约束.前2*N列代表每个人的哪种状态,后N列保证每个人至多选一次. 显然对手可以被战胜多次(重复覆盖),每个角色至多选择一 ...
- 201621123034 《Java程序设计》第6周学习总结
作业06-接口.内部类 1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图或相关笔记,对面向对象思想进行一个总结. 注1:关键词与内容不求多 ...
- Java分布式数据导出实践
伴随业务发展日益剧增,对数据的要求越来越多也越来越高. 用户在浏览器发起导出请求--web服务器接收请求--请求后台获取数据--数据统计后生成excel或其他图标--响应给客户端 整个过程至少5步,才 ...
- REST Web 服务(二)----JAX-RS 介绍
1. 什么是JAX-RS? JAX-RS——Java API for RESTful Web Services,是为 Java 程序员提供的一套固定的接口(Java API),用于开发表述性状态转移( ...
- MAC使用IDA PRO远程调试LINUX程序
1 背景 在学习Linux系统上的一些漏洞知识的时候,往往需要进行“实地测试”,但是在Linux系统上进行调试并不太方便,因为LINUX自带的GDB调试工具真的不太人性化,即使有GDBTUI之类的“伪 ...
- 基于类的通用视图(Class-based generic views)
在web开发中,最令人头痛的就是一遍又一遍的重复固定的模式.在解决了模板层面和模型层面的重复代码之痛之后,Django使用通用视图来解决视图层面的代码重复. 扩展通用视图 毫无疑问通用视图可以大幅度地 ...