You are given an integer array nums and you have to return a new counts array. The counts array has the property where counts[i] is the number of smaller elements to the right of nums[i].

Example:

Given nums = [5, 2, 6, 1]

To the right of 5 there are 2 smaller elements (2 and 1).
To the right of 2 there is only 1 smaller element (1).
To the right of 6 there is 1 smaller element (1).
To the right of 1 there is 0 smaller element.

Return the array [2, 1, 1, 0].

思路:O(nlogn)复杂度算法。

将数组排序然后构建二叉搜索树。一开始二叉搜索树上的节点都标记为未处理过。然后我们从所给的nums数组的最后一个数倒着向前遍历,依次将每一个数在二叉搜索树中对应的节点标记为处理过,然后返回二叉搜索树中已经被标记为处理过,且小于该值的个数。

具体实现中,我们在每一个节点中设置一个count变量,计数以该节点为根节点的子树中已经被标记为处理过的节点个数,初始为0。之后算法运行过程中不断更新该值并通过该值更快地求解。本质上来说这是一个线段树的应用。

当我们要求二叉搜索树中有多少被处理过的节点值小于所给的值时,有三种情况:

  • 所给的值是当前子树的根节点。则小于它的数只可能在左子树中,因此返回根节点左孩子的count值。
  • 所给的值在当前子树的左子树中。则小于它的数只可能在左子树中,因此递归求解,返回左子树中被处理过且小于所给值的节点个数。
  • 所给的值在当前子树的右子树中。则小于它的数可能在左子树中或者是该根节点,或者在右子树中。因此递归求解,返回左子树和根节点中被处理过且小于所给值的节点个数加上右子树中被处理过且小于所给值的节点个数。

二叉搜索树的构建O(n),二叉搜索树的单次查找更新操作O(logn)。 总复杂度为O(n) + O(nlogn) = O(nlogn)

 class treeNode {
public:
int val, count;
treeNode *left, *right;
treeNode(int v) : val(v), count(), left(NULL), right(NULL) {}
};
class Solution {
public:
//convert a sortedArray to a binary search tree and return a pointer to its root node
treeNode* buildTree(vector<int>& sortedArray, int left, int right) {
if (right < left) return NULL;
int mid = left + (right - left) / ;
treeNode* cur = new treeNode(sortedArray[mid]);
cur->left = buildTree(sortedArray, left, mid - );
cur->right = buildTree(sortedArray, mid + , right);
return cur;
}
//count numbers in this binary search tree that were processed and are less than the target
int update(treeNode* node, int target) {
if (node == NULL) return -;
if (node->val == target) {
node->count++;
return node->left ? node->left->count : ;
}
else if (node->val < target) {
int lessCount = node->count - node->right->count;
int rightCount = update(node->right, target);
node->count++;
return lessCount + rightCount;
}
else {
int leftCount = update(node->left, target);
node->count++;
return leftCount;
}
}
vector<int> countSmaller(vector<int>& nums) {
vector<int> sortedArray = nums;
sort(sortedArray.begin(), sortedArray.end(), less<int>());
treeNode* node = buildTree(sortedArray, , sortedArray.size() - );
vector<int> res(nums.size());
for (int i = nums.size() - ; i >= ; i--)
res[i] = update(node, nums[i]);
return res;
}
};

Count of Smaller Numbers After Self -- LeetCode的更多相关文章

  1. leetcode 315. Count of Smaller Numbers After Self 两种思路(欢迎探讨更优解法)

    说来惭愧,已经四个月没有切 leetcode 上的题目了. 虽然工作中很少(几乎)没有用到什么高级算法,数据结构,但是我一直坚信 "任何语言都会过时,只有数据结构和算法才能永恒". ...

  2. leetcode 315. Count of Smaller Numbers After Self 两种思路

    说来惭愧,已经四个月没有切 leetcode 上的题目了. 虽然工作中很少(几乎)没有用到什么高级算法,数据结构,但是我一直坚信 "任何语言都会过时,只有数据结构和算法才能永恒". ...

  3. [LeetCode] 315. Count of Smaller Numbers After Self (Hard)

    315. Count of Smaller Numbers After Self class Solution { public: vector<int> countSmaller(vec ...

  4. [Swift]LeetCode315. 计算右侧小于当前元素的个数 | Count of Smaller Numbers After Self

    You are given an integer array nums and you have to return a new countsarray. The counts array has t ...

  5. [LeetCode] Count of Smaller Numbers After Self 计算后面较小数字的个数

    You are given an integer array nums and you have to return a new counts array. The counts array has ...

  6. LeetCode Count of Smaller Numbers After Self

    原题链接在这里:https://leetcode.com/problems/count-of-smaller-numbers-after-self/ 题目: You are given an inte ...

  7. LeetCode 315. Count of Smaller Numbers After Self

    原题链接在这里:https://leetcode.com/problems/count-of-smaller-numbers-after-self/ 题目: You are given an inte ...

  8. [LeetCode] 315. Count of Smaller Numbers After Self 计算后面较小数字的个数

    You are given an integer array nums and you have to return a new counts array. The countsarray has t ...

  9. leetcode@ [315/215] Count of Smaller Numbers After Self / Kth Largest Element in an Array (BST)

    https://leetcode.com/problems/count-of-smaller-numbers-after-self/ You are given an integer array nu ...

随机推荐

  1. pythondifflib模块讲解示例

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/Lockey23/article/details/77913855 difflib模块提供的类和方法用 ...

  2. java5初学

    1.Eclipse快捷键 alt + / 代码提示,例如自动创建main方法ctrl + d 删除当前行ctrl + alt + up/down 复制当前行alt + up/down 交换行ctrl ...

  3. operator、explicit与implicit

    说这个之前先说下什么叫隐式转换和显示转换 1.所谓隐式转换,就是系统默认的转换,其本质是小存储容量数据类型自动转换为大存储容量数据类型. 例如:float f = 1.0: double d=f:这样 ...

  4. 孤荷凌寒自学python第十六天python的迭代对象

    孤荷凌寒自学python第十六天python的迭代对象 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) 迭代也就是循环. python中的迭代对象有相关的如下几个术语: A容器 contrai ...

  5. springboot02 Thymeleaf

    一.http协议 1. 什么是协议? 协议是交易双方共同遵守的一种约定,比如: 租房协议 , 购买协议.... 2. 什么是http协议? HTTP协议是Hyper Text Transfer Pro ...

  6. tinymce 上传图片空间(转)

    转载自:http://www.cnblogs.com/ilovewindy/p/3823069.html 创建plugin后, editor_plugin.js中使用了 imageUploadWind ...

  7. tomcat集群和负载均衡的实现(session同步)

      (一)环境说明 (1)服务器有4台,一台安装apache,三台安装tomcat (2)apache2.0.55.tomcat5.5.15.jk2.0.4.jdk1.5.6或jdk1.4.2 (3) ...

  8. htmlagilitypack解析html

    这是个很好的的东西,以前做Html解析都是在用htmlparser,用的虽然顺手,但解析速度较慢,碰巧今天找到了这个,就拿过来试,一切出乎意料,非常爽,推荐给各位使用. 下面是一些简单的使用技巧,希望 ...

  9. 【Luogu】P2489迷宫探险(概率DP)

    题目链接 设f[i][j][k][l]是当前在(i,j),对陷阱的了解状态为k(0表示了解该陷阱为无危险,1表示了解该陷阱有危险,2不了解),l表示当前血,走出迷宫的概率 dfsDP即可. 注意随时更 ...

  10. WebRTC 视频对话

    今天聊一下WebRTC.很多开发者,可能会觉得有些陌生,或者直接感觉繁杂.因为WebRTC在iOS上的应用,只是编译都让人很是头痛.这些话,到此为止,以防让了解者失去信心.我们只传播正能量,再多的困难 ...