【计数】cf938E. Max History
发现有一种奇怪的方法不能快速预处理?
复习一下常见的凑组合数的套路
You are given an array a of length n. We define fa the following way:
- Initially fa = 0, M = 1;
- for every 2 ≤ i ≤ n if aM < ai then we set fa = fa + aM and then set M = i.
Calculate the sum of fa over all n! permutations of the array a modulo 109 + 7.
Note: two elements are considered different if their indices differ, so for every array a there are exactly n! permutations.
Input
The first line contains integer n (1 ≤ n ≤ 1 000 000) — the size of array a.
Second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).
Output
Print the only integer, the sum of fa over all n! permutations of the array a modulo 109 + 7.
题目大意

题目分析
主要是记一下一种凑组合数的常见套路,网上其他人都是一种另外的考虑方式。
对于数$a_q$枚举它每一个出现位置的贡献,记严格小于它的数有$m$个,则有$a_q\sum\limits_{p=1}^n{m \choose {p-1}}(p-1)! (n-p)!$即$a_q m!\sum\limits_{p=1}^n{{(n-p)!}\over {(m-p+1)!}}$。于是就会发现右边这个东西分子分母都有自变量,看上去很难处理,但形式上又是有些相似的感觉。
式子可以接着这么化:$a_qm!(n-m+1)!\sum\limits_{p=1}^n{{n-p}\choose{n-m-1}}$,也就是把右式做成一个组合数。
注意到新的右式是经典问题组合数的列前缀和,于是化成:$a_qm!(n-m+1)!{{n}\choose{n-m}}$
最后化简得到:$a_qn!\over{n-m}$
#include<bits/stdc++.h>
#define MO 1000000007
const int maxn = ; int n,ans,cnt,a[maxn],fac[maxn],inv[maxn]; int read()
{
char ch = getchar();
int num = , fl = ;
for (; !isdigit(ch); ch=getchar())
if (ch=='-') fl = -;
for (; isdigit(ch); ch=getchar())
num = (num<<)+(num<<)+ch-;
return num*fl;
}
int main()
{
n = read();
for (int i=; i<=n; i++) a[i] = read();
std::sort(a+, a+n+);
fac[] = fac[] = inv[] = inv[] = ;
for (int i=; i<=n+; i++)
inv[i] = MO-1ll*(MO/i)*inv[MO%i]%MO,
fac[i] = 1ll*fac[i-]*i%MO;
for (int i=,j; i<=n; i=j+)
{
for (j=i; a[j+]==a[i]; j++);
if (j==n) break;
cnt = inv[n-i+];
ans = (1ll*ans+1ll*a[i]*(j-i+)%MO*cnt%MO)%MO;
}
printf("%d\n",1ll*ans*fac[n]%MO);
return ;
}
END
【计数】cf938E. Max History的更多相关文章
- [CF938E]Max History题解
题面 >CF传送门< >洛谷传送门< 解法 显而易见,对于一个数\(a_i\),若果它出现在\(f\)序列中,必定\(a_i\)之前的元素要小于\(a_i\),我们设\(cnt ...
- Max History CodeForces - 938E (组合计数)
You are given an array a of length n. We define fa the following way: Initially fa = 0, M = 1; for e ...
- 2018.12.12 codeforces 938E. Max History(组合数学)
传送门 唉最开始居然把题给看错了. 其实是组合数学傻逼题呢. 题意简述:给出一个数列,定义一个与数列有关的fff函数,fff函数定义如下: 首先f=0,M=1f=0,M=1f=0,M=1,一直重复如下 ...
- Codeforces 938E Max History:排列 + 逆元【考虑单个元素的贡献】
题目链接:http://codeforces.com/problemset/problem/938/E 题意: 定义f(a): 初始时f(a) = 0, M = 1. 枚举i = 2 to n,如果a ...
- CodeForces 938E Max History 题解
参考自:https://blog.csdn.net/dreaming__ldx/article/details/84976834 https://blog.csdn.net/acterminate/a ...
- 如何解决Redis中的key过期问题
最近我们在Redis集群中发现了一个有趣的问题.在花费大量时间进行调试和测试后,通过更改key过期,我们可以将某些集群中的Redis内存使用量减少25%. Twitter内部运行着多个缓存服务.其中一 ...
- [SQL入门级] 接上篇,继续查询
距离上一篇时间隔得蛮久了,这篇继续查询,简单总结一下聚合函数.分组的知识. 一.聚合函数(组函数/多行函数) 何谓多行函数,顾名思义就是函数作用于多行数据得出一个输出结果,什么意思呢?看图: 那么常用 ...
- SQL基本语句以及示例
基本语句: /*dorp colunm*/ 语法:ALTER TABLE 表名 DROP COLUMN 要删除的字段 验证财务转换的正确性,查询以下两个表是否有数据 /*表连接inner jion ...
- python——使用readline库实现tab自动补全
Input History readline tracks the input history automatically. There are two different sets of funct ...
随机推荐
- linux下find查找与批量替换文件中指定内容
经常在部署tomcat时需要替换配置文件中的ip,find命令批量替换还是很方便的 查找需要替换的ip,看看哪些文件有配置这个ip,执行下面命令: find ./ -type f -regex &qu ...
- DSL与GPL
一.DSL 与 GPL DSL(Domain-Specified Language 领域特定语言),而与 DSL 相对的就是 GPL,最常见的 DSL 包括 Regex 以及 HTML & C ...
- ProtobufUtils
import java.io.IOException; import java.io.InputStream; import java.lang.reflect.Method; import com. ...
- QT 简单的计算器例子
开发工具:vs2010.qt5.1 1使用vs新建工程,Base Class 选择QDialog
- 008 String to Integer (atoi) 字符串转换为整数
详见:https://leetcode.com/problems/string-to-integer-atoi/description/ 实现语言:Java class Solution { publ ...
- TTL-USB
CH340/ CH341T.CP2102.PL2303 .FT232: FT232:性能好,但价格贵:PL2303台湾的听说很多仿制的,CH340/341T/341A:国产的性能比PL2303好,并且 ...
- 【转】grunt动态生成文件名
动态生成文件名 expand 设置为true打开以下选项 cwd 所有src指定的文件相对于这个属性指定的路径 src 要匹配的路径,相对与cwd dest 生成的目标路径前缀 ext 替换所有生成的 ...
- Linux Shell命令系列(1)
1. ls命令ls命令是列出目录内容(List Directory Contents)的意思.运行它就是列出文件夹里的内容,可能是文件也可能是文件夹.“ls -l”命令以详情模式(long listi ...
- 牛客网Java刷题知识点之基本类型、引用类型
不多说,直接上干货! byte-short-int-long,方便识记.
- jquery的.get方法说解
·Customer类 public class Customer { public int Unid { get; set; } public string CustomerName { get; s ...