Strongly connected

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

Give a simple directed graph with N nodes and M edges. Please tell me the maximum number of the edges you can add that the graph is still a simple directed graph. Also, after you add these edges, this graph must NOT be strongly connected. 
A simple directed graph is a directed graph having no multiple edges or graph loops.
A strongly connected digraph is a directed graph in which it is possible to reach any node starting from any other node by traversing edges in the direction(s) in which they point. 
 

Input

The first line of date is an integer T, which is the number of the text cases. 
Then T cases follow, each case starts of two numbers N and M, 1<=N<=100000, 1<=M<=100000, representing the number of nodes and the number of edges, then M lines follow. Each line contains two integers x and y, means that there is a edge from x to y.
 

Output

For each case, you should output the maximum number of the edges you can add. 
If the original graph is strongly connected, just output -1.
 

Sample Input

3
3 3
1 2
 
2 3
3 1
3 3
1 2
2 3
1 3
6 6
1 2
2 3
3 1
4 5
5 6
6 4
 

Sample Output

Case 1: -1
Case 2: 1
Case 3: 15
 
 
题目大意:给n个结点,m条有向边。问你最多加多少条边,让原图仍然不是强连通的。如果图本身就是强连通的,输出-1
 
解题思路:如果要让图不是强连通图,那么必须会将分成两部分。我们设左部分为X,右部分为Y。X这边的结点个数设为x,X这边的结点个数设为y,想要加边最多,那么可以让左边X成为完全图,右边Y成为完全图。让X与Y之间全部都是一个方向的边,即如果是X--->Y的,那么所有都是从X->Y的;如果是从Y--->X的,那么所有都是Y->X的。那么我们可以得到一个公式计算这样能形成的所有边数  F = x*y + x*(x-1) + y*(y-1)表示X与Y之间形成的边数+X形成完全图的边数+Y形成完全图的边数。x+y = n。公式可以进一步化简得:F = n*n - n - (xy)。这是总的边数。那么如果想让F越大,那么只要x*y值越小即可。当x+y 为定值时,x*y的值越小,则需要x与y的差值越大。那么我们通过缩点以后,让缩点出度或者入度为0的单独放在X或者Y,让剩余的放到另一侧。然后通过枚举这样的缩点,即可找到结果。
 
#include<stdio.h>
#include<algorithm>
#include<queue>
#include<stack>
#include<string.h>
#include<vector>
using namespace std;
typedef long long INT;
const int maxn = 100100;
struct Edge{
int from,to,dist,next;
Edge(){}
Edge(int _to,int _next):to(_to),next(_next){}
}edges[maxn];
int tot, head[maxn];
void init(){
tot = 0;
memset(head,-1,sizeof(head));
}
void AddEdge(int _u,int _v){
edges[tot] = Edge(_v,head[_u]);
head[_u] = tot++;
}
int dfs_clock, scc_cnt;
int sccno[maxn], dfn[maxn], lowlink[maxn];
stack<int>S;
void dfs(int u){
lowlink[u] = dfn[u] = ++dfs_clock;
S.push(u);
for(int i = head[u]; i != -1; i = edges[i].next){
int v = edges[i].to;
if(!dfn[v]){
dfs(v);
lowlink[u] = min(lowlink[u], lowlink[v]);
}else if(!sccno[v]){
lowlink[u] = min(lowlink[u],dfn[v]);
}
}
if(lowlink[u] == dfn[u]){
scc_cnt++;
for(;;){
int x = S.top();
S.pop();
sccno[x] = scc_cnt;
if(x == u){
break;
}
}
}
}
void find_scc(int n){
dfs_clock = scc_cnt = 0;
memset(sccno,0,sizeof(sccno));
memset(dfn,0,sizeof(dfn));
for(int i = 1; i <= n; i++){
if(!dfn[i]){
dfs(i);
}
}
}
int outdeg[maxn], indeg[maxn];
INT sccsz[maxn];
int main(){
int T, m, cas = 0;
INT n;
scanf("%d",&T);
while(T--){
scanf("%lld%d",&n,&m);
init();
int a,b;
for(int i = 0; i < m; i++){
scanf("%d%d",&a,&b);
AddEdge(a,b);
}
find_scc(n);
printf("Case %d: ",++cas);
if(scc_cnt == 1){
puts("-1");continue;
}
memset(indeg,0,sizeof(indeg));
memset(outdeg,0,sizeof(outdeg));
memset(sccsz,0,sizeof(sccsz));
for(int i = 1; i <= n; i++){
sccsz[sccno[i]]++;
for(int j = head[i]; j != -1; j = edges[j].next){
int v = edges[j].to;
if(sccno[i] == sccno[v]){
continue;
}
indeg[sccno[v]]++;
outdeg[sccno[i]]++;
}
}
INT ans = 0;
for(int i = 1; i <= scc_cnt; i++){
if(indeg[i] == 0 ||outdeg[i] == 0){
ans = max( ans, (n*n - n - sccsz[i]*(n - sccsz[i]))-m );
}
}
printf("%lld\n",ans);
}
return 0;
} /*
555
7 9
1 5
1 2
5 6
6 7
7 5
6 4
2 4
4 3
3 2 */

  

 

HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】的更多相关文章

  1. HDU 4635 Strongly connected(强连通)经典

    Strongly connected Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  2. hdu 4635 Strongly connected 强连通缩点

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...

  3. hdu 4635 Strongly connected(强连通)

    考强连通缩点,算模板题吧,比赛的时候又想多了,大概是不自信吧,才开始认真搞图论,把题目想复杂了. 题意就是给你任意图,保证是simple directed graph,问最多加多少条边能使图仍然是si ...

  4. hdu 4635 Strongly connected 强连通

    题目链接 给一个有向图, 问你最多可以加多少条边, 使得加完边后的图不是一个强连通图. 只做过加多少条边变成强连通的, 一下子就懵逼了 我们可以反过来想. 最后的图不是强连通, 那么我们一定可以将它分 ...

  5. HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)

    Strongly connected Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  6. HDU 4635 Strongly connected(强连通分量缩点+数学思想)

    题意:给出一个图,如果这个图一开始就不是强连通图,求出最多加多少条边使这个图还能保持非强连通图的性质. 思路:不难想到缩点转化为完全图,然后找把它变成非强连通图需要去掉多少条边,但是应该怎么处理呢…… ...

  7. HDU 4635 Strongly connected (Tarjan+一点数学分析)

    Strongly connected Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) ...

  8. HDU 4635 Strongly connected (强连通分量)

    题意 给定一个N个点M条边的简单图,求最多能加几条边,使得这个图仍然不是一个强连通图. 思路 2013多校第四场1004题.和官方题解思路一样,就直接贴了~ 最终添加完边的图,肯定可以分成两个部X和Y ...

  9. HDU 4635 - Strongly connected(2013MUTC4-1004)(强连通分量)

    t这道题在我们队属于我的范畴,最终因为最后一个环节想错了,也没搞出来 题解是这么说的: 最终添加完边的图,肯定可以分成两个部X和Y,其中只有X到Y的边没有Y到X的边,那么要使得边数尽可能的多,则X部肯 ...

随机推荐

  1. signalR之java client的websocket BUG处理

    最近在用SignalR,服务端已经写好(老铁,没毛病,很稳),然后有坑的是我还得写App端,那就撸吧,java也不是什么很难的东西.奈何坑多(已经踩了一波android的控件bug),这次遇到了MS的 ...

  2. SQLServer数据库,表内存,实例名分析SQL语句

    --数据库内存分析 USE master go DECLARE @insSize TABLE(dbName sysname,checkTime VARCHAR(19),dbSize VARCHAR(5 ...

  3. 自定义等高 Cell

    1.介绍 1.1 代码自定义 cell(使用 frame) 创建一个继承自 UITableViewCell 的子类,比如 BookCell1. 在 initWithStyle:reuseIdentif ...

  4. Java开发环境配置(JDK+Tomcat+MyEclipsed)

    前言 这个项目一开始,我只能说我把自己整的很无语,所以我只能在调整心态的基础上,重新把思路缕了一遍,好了,接下来就说java运行环境以及发布运行方法还有SSH环境配置. 内容 本次配置用到的安装包: ...

  5. soj 131 找题

    soj 131 找题 给出两个长度为n,都含k个1的字符串A,B.现在令\(a_1,a_2,\dots,a_k\)是A中1的下标,\(b_1,b_2,\dots,b_k\)是B中1的下表,然后将a,b ...

  6. sap abap 流水号设置

    1.TCODE:SNRO,进入如图所示界面 2. 短文本和长文本用来说明这个编号范围对象,输入任意描述即可. 子对象数据元素我们这里不填.这里需要说明一下,所谓子对象,多数指一个组织结构,比如公司代码 ...

  7. flink学习笔记-快速生成Flink项目

    说明:本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKh ...

  8. pycharm加开头注释

    选择 File and Code Templates -> Files -> Python Script #!/usr/bin/env python # encoding: utf-8 ' ...

  9. 「洛谷5017」「NOIP2018」摆渡车【DP,经典好题】

    前言 在考场被这个题搞自闭了,那个时候自己是真的太菜了.qwq 现在水平稍微高了一点,就过来切一下这一道\(DP\)经典好题. 附加一个题目链接:[洛谷] 正文 虽然题目非常的简短,但是解法有很多. ...

  10. p标签text-align:justify以及CSS文字两端对齐

    p标签样式添加text-align:justify; 那么就会左右对齐. 使用前: 使用后: CSS文字两端对齐 使用前: 代码: <style> div{ width:100px; he ...