好吧刚开始以为扩展卢卡斯然后就往上套。。结果奇奇怪怪又WA又T。。。后来才意识到它的因子都是质数。。。qwq怕不是这就是学知识学傻了。。


题意:$ G^{\Sigma_{d|n} \space C_n^d}\space mod \space 999911659$

首先发现999911659是个质数,所以根据欧拉定理的推论有

$ G^{\Sigma_{d|n}\space C_n^d} \equiv G^{\Sigma_{d|n}\space C_n^d\space mod \space\phi(999911659)} \space mod \space 999911659$ ,而$\phi(999911659)=999911658$

对$999911658$算数基本定理分解$999911658= 2*3*4679*35617$,

所以我们用卢卡斯可以求出$ \Sigma_{d|n}\space C_n^d\space mod \space p_i$,再把他们中国剩余定理合并就好了;

#include<cstdio>
#include<iostream>
#define ll long long
#define R register ll
using namespace std;
const int mod[]={,,,},md=,mmd=;
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
int fac[];
inline ll qpow(ll a,ll b,ll p) { R ret=; a%=p;
for(;b;b>>=,(a*=a)%=p) if(b&) (ret*=a)%=p; return ret;
}
inline void exgcd(ll a,ll b,ll& x,ll& y) {
if(!b) {x=,y=; return ;}
exgcd(b,a%b,y,x),y-=a/b*x;
}
inline ll Inv(ll n,ll p) {
R x,y; exgcd(n,p,x,y); return (x%p+p)%p;
}
inline ll C(ll n,ll m,ll p) {
if(n<m) return ; return fac[n]*Inv(fac[n-m],p)%p*Inv(fac[m],p)%p;
}
inline ll L(ll n,ll m,ll p) {
if(n<m) return ; if(!n) return ;
return L(n/p,m/p,p)*C(n%p,m%p,p)%p;
}
ll n,G,anss,ans[];
signed main() { fac[]=;
n=g(),G=g(); G%=md+; if(!G) {printf("0\n"); return ;}
for(R i=;i<mod[];++i) fac[i]=(ll)fac[i-]*i%md;
for(R i=;i*i<=n;++i) if(n%i==) {
for(R j=;j<=;++j) ans[j]=(ans[j]+L(n,i,mod[j]))%mod[j];
if(i*i!=n) for(R j=;j<=;++j) ans[j]=(ans[j]+L(n,n/i,mod[j]))%mod[j];
} for(R i=;i<=;++i) anss+=ans[i]*Inv(md/mod[i],mod[i])%md*md/mod[i]%md;
printf("%lld\n",qpow(G,anss,mmd));

2019.05.18

Luogu P2480 [SDOI2010]古代猪文 卢卡斯+组合+CRT的更多相关文章

  1. 【题解】P2480 [SDOI2010]古代猪文 - 卢卡斯定理 - 中国剩余定理

    P2480 [SDOI2010]古代猪文 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 猪王国的文明源远流长,博大精 ...

  2. luogu P2480 [SDOI2010]古代猪文

    M_sea:这道题你分析完后就是一堆板子 废话 理解完题意后,我们要求的东西是\(G^s(s=\sum_{d|n} \binom{n}{d})\) 但是这个指数\(s\)算出来非常大,,, 我们可以利 ...

  3. 洛咕 P2480 [SDOI2010]古代猪文

    洛咕 P2480 [SDOI2010]古代猪文 题目是要求\(G^{\sum_{d|n}C^d_n}\). 用费马小定理\(G^{\sum_{d|n}C^d_n\text{mod 999911658} ...

  4. 洛谷 P2480 [SDOI2010]古代猪文 解题报告

    P2480 [SDOI2010]古代猪文 题目背景 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" ...

  5. P2480 [SDOI2010]古代猪文

    P2480 [SDOI2010]古代猪文 比较综合的一题 前置:Lucas 定理,crt 求的是: \[g^x\bmod 999911659,\text{其中}x=\sum_{d\mid n}\tbi ...

  6. 【BZOJ1951】[Sdoi2010]古代猪文 Lucas定理+CRT

    [BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有 ...

  7. 洛谷 P2480 [SDOI2010]古代猪文 题解【欧拉定理】【CRT】【Lucas定理】

    数论综合题. 题目背景 题目背景与题目无关因此省略.题目链接 题目描述 猪王国的文明源远流长,博大精深. iPig 在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为 \(N\).当然,一种语 ...

  8. P2480 [SDOI2010]古代猪文 Lucas+CRT合并

    \(\color{#0066ff}{ 题目描述 }\) 猪王国的文明源远流长,博大精深. iPig在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为N.当然,一种语言如果字数很多,字典也相应会 ...

  9. 洛谷P2480 [SDOI2010]古代猪文(费马小定理,卢卡斯定理,中国剩余定理,线性筛)

    洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d| ...

随机推荐

  1. POJ2891Strange Way to Express Integers (线性同余方程组)

    Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative ...

  2. ACM学习历程——ZOJ 3822 Domination (2014牡丹江区域赛 D题)(概率,数学递推)

    Description Edward is the headmaster of Marjar University. He is enthusiastic about chess and often ...

  3. margin百分比的相对值--宽度!

    假设一个块级包含容器,宽1000px,高600px,块级子元素定义 margin:10% 5%; 那么 margin的 top, right, bottom, left 计算值最终是多少px? 不是1 ...

  4. Poj1012_Joseph

    一.Description The Joseph's problem is notoriously known. For those who are not familiar with the ori ...

  5. QTP使用outlook发送邮件

    '发邮件 Dim objOutlook  Dim objOutlookMsg Dim olMailItem  ' Create the Outlook object and the new mail ...

  6. HTTP返回码中301与302的区别

    一.官方说法 301,302 都是HTTP状态的编码,都代表着某个URL发生了转移,不同之处在于: 301 redirect: 301 代表永久性转移(Permanently Moved). 302 ...

  7. 【总结整理】关于Json的解析,校验和验证

    var jasondata='{"staff": [{"name":"红旗","age":90}, {"nam ...

  8. \阶段4-独挡一面\项目-基于视频压缩的实时监控系统\Sprint2-采集端图像采集子系统设计

    1.在编写程序前有一个流程,思维导图: 初始化:包括初始化摄像头:注册事件到epoll 然后是开始启动采集:一旦开始采集我们的摄像头就会有数据了,它会触发事件处理函数:我们在这里的处理是保存这个图像: ...

  9. vue中v-if 与v-show的区别

    v-if vs v-show v-if 是“真正的”条件渲染,因为它会确保在切换过程中条件块内的事件监听器和子组件适当地被销毁和重建. v-if 也是惰性的:如果在初始渲染时条件为假,则什么也不做—— ...

  10. Codeforces Round #524 (Div. 2) D(思维,构造)

    #include<bits/stdc++.h>using namespace std;long long dp[107];int main(){    int cnt=1;    dp[1 ...