Undoubtedly you know of the Fibonacci numbers. Starting with

F1 = 1 and F2 = 1, every next number is the sum of the two

previous ones. This results in the sequence 1, 1, 2, 3, 5, 8, 13, . . ..

Now let us consider more generally sequences that obey the

same recursion relation

Gi = Gi−1 + Gi−2 for i > 2

but start with two numbers G1 ≤ G2 of our own choice. We shall

call these Gabonacci sequences. For example, if one uses G1 = 1

and G2 = 3, one gets what are known as the Lucas numbers:

1, 3, 4, 7, 11, 18, 29, . . .. These numbers are – apart from 1 and 3 –

different from the Fibonacci numbers.

By choosing the first two numbers appropriately, you can get

any number you like to appear in the Gabonacci sequence. For

example, the number n appears in the sequence that starts with 1

and n − 1, but that is a bit lame. It would be more fun to start with numbers that are as small

as possible, would you not agree?

Input

On the first line one positive number: the number of test cases, at most 100. After that per test

case:

• one line with a single integer n (2 ≤ n ≤ 109

): the number to appear in the sequence.

Output

Per test case:

• one line with two integers a and b (0 < a ≤ b), such that, for G1 = a and G2 = b,

Gk = n for some k. These numbers should be the smallest possible, i.e., there should be

no numbers a

0 and b

0 with the same property, for which b

0 < b, or for which b

0 = b and

a

0 < a.

Sample in- and output

Input 

5

89

123

1000

1573655

842831057

Output

1 1

1 3

2 10

985 1971

2 7

解题:斐波那契第n项:a[n]=f[n-1]*x+f[n]*y;       //  f[n]:f[1]=0,f[2]=1;的斐波那契数列。枚举n与y看是否能整除f[n-1]。且除数<=y。

x:斐波那契第一项。y:斐波那契第二项。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define Max(a,b) (a>b?a:b)
using namespace std;
#define ll long long
int main (void)
{
int f[1005] , ans ;
int y ,x;
f[1]=0;
f[2]=1;
int i=3;
for( i=3; i<=46; i++)
{
f[i]=f[i-1]+f[i-2];
}
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&ans);
if(ans==1||ans==2)
{
printf("1 1\n");
continue;
}
bool bb=0;
for(int i=45 ; i>2&&!bb; i--)
for(int ty=1; ty<=1000000; ty++)
if(ty*f[i]+f[i-1]>ans)
break;
else if((ans-ty*f[i])%f[i-1]==0&&(ans-ty*f[i])/f[i-1]<=ty)
{
y=ty , x=(ans-ty*f[i])/f[i-1] , bb=1;
break;
}
printf("%d %d\n",x,y);
}
return 0;
}

HUNAN Interesting Integers(爆力枚举)的更多相关文章

  1. 【扩展欧几里得】BAPC2014 I Interesting Integers (Codeforces GYM 100526)

    题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show& ...

  2. interesting Integers(数学暴力||数论扩展欧几里得)

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAwwAAAHwCAIAAACE0n9nAAAgAElEQVR4nOydfUBT1f/Hbw9202m0r8

  3. GYM100526I Interesting Integers

    题目大意 定义一种 \(Gabonacci\) 数列: \[\begin{array}{c} G_1=a\\ G_2=b\\ G_i=G_{i-1}+G_{i-2} \end{array} \] 给定 ...

  4. 计蒜客 28319.Interesting Integers-类似斐波那契数列-递推思维题 (Benelux Algorithm Programming Contest 2014 Final ACM-ICPC Asia Training League 暑假第一阶段第二场 I)

    I. Interesting Integers 传送门 应该是叫思维题吧,反正敲一下脑壳才知道自己哪里写错了.要敢于暴力. 这个题的题意就是给你一个数,让你逆推出递推的最开始的两个数(假设一开始的两个 ...

  5. Google kickstart 2022 Round A题解

    Speed Typing 题意概述 给出两个字符串I和P,问能否通过删除P中若干个字符得到I?如果能的话,需要删除字符的个数是多少? 数据规模 \[1≤|I|,|P|≤10^5 \] 双指针 设置两个 ...

  6. 解剖SQLSERVER 第十七篇 使用 OrcaMDF Corruptor 故意损坏数据库(译)

    解剖SQLSERVER 第十七篇 使用 OrcaMDF Corruptor 故意损坏数据库(译) http://improve.dk/corrupting-databases-purpose-usin ...

  7. 2018-2019 ACM-ICPC Pacific Northwest Regional Contest (Div. 1) Solution

    A:Exam Solved. 温暖的签. #include<bits/stdc++.h> using namespace std; ; int k; char str1[maxn], st ...

  8. ACM 第十七天

    暑期热身赛 BAPC 2014 The 2014 Benelux Algorithm Programming Contest 题目网址:https://odzkskevi.qnssl.com/3655 ...

  9. Benelux Algorithm Programming Contest 2014 Final

    // Button Bashing (bfs) 1 #include <iostream> #include <cstdio> #include <cstring> ...

随机推荐

  1. BZOJ[Sdoi2014]数表 莫比乌斯反演

    [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2383  Solved: 1229[Submit][Status][Disc ...

  2. 常用sql语句 DML语句

    1.select  *|字段名 from 表名 [where 条件] [order by 排序 asc|desc] [limit 限制输出 startrow,pagesize] 查询 2.insert ...

  3. js函数调用与声明 (for时注意)

    可以的: test();  // 直接function 方式声明的函数可以直接调用,后声明 function test(){} aa();   //error  var 方式声明的函数需先声明后调用v ...

  4. Android 画笔Paint

    转自 http://wuxiaolong.me/2016/08/20/Paint/ 了解Android Paint,一篇就够.引用Aige<自定义控件其实很简单>系列博客的话“很多时候你压 ...

  5. poj 3071 Football (概率DP水题)

    G - Football Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit ...

  6. Linux下USB驱动框架分析【转】

    转自:http://blog.csdn.net/brucexu1978/article/details/17583407 版权声明:本文为博主原创文章,未经博主允许不得转载. http://www.c ...

  7. 网盘+SVN

    1.安装网盘 选择一个国内有名的网盘存储,例如金山网盘.360云盘等,注册账户会默认赠送几G的使用空间,然后下载其对应的网盘客户端管理软件(也可以使用浏览器方式),使用账号登录,就可以上传.管理文件等 ...

  8. Web开发之编码与解码、签名、加密与解密

    在Web开发中,编码与解码.签名.加密与解密是非常常见的问题.本文不会介绍具体实例,而是介绍这些的原理.用途与区别.一.编码与解码        在Web开发中,需要通过URL的query参数来传递数 ...

  9. HDU6383 2018 “百度之星”程序设计大赛 - 初赛(B) 1004-p1m2 (二分)

    原题地址 p1m2 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  10. [BZOJ 1806] Miners 矿工配餐

    Link: BZOJ 1806 传送门 Solution: 为了使状态包含每个节点前所有必须的信息: 设$dp[i][a1][a2][b1][b2]$为配送到第$i$个,一厂前两个为$a1,a2$,二 ...