题意:给定一个序列,让你求两种数,一个是求一个子序列,包含最大值和最小值,再就是求一个子集包含最大值和最小值。

析:求子序列,从前往记录一下最大值和最小值的位置,然后从前往后扫一遍,每个位置求一下数目就好。

求子集可以用排列组合解决,很简单,假设最大值个数是 n,最小值的数是 m,总数是 N,答案就是 (2^n-1) * (2^m-1)*2^(N-m-n),

当然要特殊判断最大值和最小值相等的时候。

当然也可以用容斥来求,就是总数 - 不是最大值的数目 - 不是最小值的数目 + 不是最大值也不是最小值的数目,其实也差不多

代码如下:

排列组合:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e5 + 10;
const int mod = 1000000007;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
} LL fast_pow(int n){
LL a = 2, ans = 1;
while(n){
if(n & 1) ans = ans * a % mod;
n >>= 1;
a = a * a % mod;
}
return ans;
} int a[maxn];
vector<int> v1, v2; int main(){
int T; cin >> T;
while(T--){
scanf("%d", &n);
int mmin = mod, mmax = 0;
for(int i = 0; i < n; ++i){
scanf("%d", a+i);
mmin = min(mmin, a[i]);
mmax = max(mmax, a[i]);
}
v1.clear(); v2.clear();
for(int i = 0; i < n; ++i)
if(mmin == a[i]) v1.push_back(i);
else if(mmax == a[i]) v2.push_back(i);
if(v1.size() == n){
LL ans1 = (LL)n * (n+1) / 2 % mod;
LL ans2 = (fast_pow(n) - 1 % mod) % mod;
printf("%lld %lld\n", ans1, ans2);
continue;
}
LL ans2 = (fast_pow(v1.size())-1) * (fast_pow(v2.size())-1) % mod * fast_pow(n-v1.size()-v2.size()) % mod;
ans2 = (ans2 + mod) % mod;
int i = 0, j = 0, pre = 0;
LL ans1 = 0;
while(true){
int t1 = min(v1[i], v2[j]);
int t2 = max(v1[i], v2[j]);
ans1 = (ans1 + (LL)(t1-pre+1) * (n-t2)) % mod;
v1[i] < v2[j] ? ++i : ++j;
if(i == v1.size() || v2.size() == j) break;
pre = min(t1+1, min(v1[i], v2[j]));
}
printf("%lld %lld\n", ans1, ans2);
}
return 0;
}

  

容斥:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e5 + 10;
const int mod = 1000000007;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
} LL fast_pow(int n){
LL a = 2, ans = 1;
while(n){
if(n & 1) ans = ans * a % mod;
n >>= 1;
a = a * a % mod;
}
return ans;
} int a[maxn];
vector<int> v1, v2; int main(){
int T; cin >> T;
while(T--){
scanf("%d", &n);
int mmin = mod, mmax = 0;
for(int i = 0; i < n; ++i){
scanf("%d", a+i);
mmin = min(mmin, a[i]);
mmax = max(mmax, a[i]);
}
v1.clear(); v2.clear();
for(int i = 0; i < n; ++i)
if(mmin == a[i]) v1.push_back(i);
else if(mmax == a[i]) v2.push_back(i);
if(v1.size() == n){
LL ans1 = (LL)n * (n+1) / 2 % mod;
LL ans2 = (fast_pow(n) - 1 % mod) % mod;
printf("%lld %lld\n", ans1, ans2);
continue;
}
LL ans2 = fast_pow(n);
ans2 = (ans2 - fast_pow(n-v1.size()) - fast_pow(n-v2.size()) + fast_pow(n-v1.size()-v2.size())) % mod;
ans2 = (ans2 % mod + mod) % mod;
int i = 0, j = 0, pre = 0;
LL ans1 = 0;
while(true){
int t1 = min(v1[i], v2[j]);
int t2 = max(v1[i], v2[j]);
ans1 = (ans1 + (LL)(t1-pre+1) * (n-t2)) % mod;
v1[i] < v2[j] ? ++i : ++j;
if(i == v1.size() || v2.size() == j) break;
pre = min(t1+1, min(v1[i], v2[j]));
}
printf("%lld %lld\n", ans1, ans2);
}
return 0;
}

  

SPOJ - AMR11H Array Diversity (水题排列组合或容斥)的更多相关文章

  1. SPOJ - AMR11H Array Diversity (排列组合)

    题意:给定n个数,求包含最大值和最小值的子集(数字连续)和子序列(数字不连续)的个数. 分析: 1.如果n个数都相同,则子集个数为N * (N + 1) / 2,子序列个数为2N-1. 2.将序列从头 ...

  2. SPOJ 3693 Maximum Sum(水题,记录区间第一大和第二大数)

    #include <iostream> #include <stdio.h> #include <algorithm> #define lson rt<< ...

  3. 2018 湖南网络比赛题 HDU - 6286 (容斥)

    题意:不说了. 更加偏向于数学不好的小可爱来理解的. 这篇博客更加偏重于容斥的讲解.用最直观的数学方法介绍这个题. 思路: 在a<=x<=b. c<=y<=d 中满足  x*y ...

  4. 【BZOJ4927】第一题 双指针+DP(容斥?)

    [BZOJ4927]第一题 Description 给定n根直的木棍,要从中选出6根木棍,满足:能用这6根木棍拼 出一个正方形.注意木棍不能弯折.问方案数. 正方形:四条边都相等.四个角都是直角的四边 ...

  5. 【HDU 5532 Almost Sorted Array】水题,模拟

    给出一个序列(长度>=2),问去掉一个元素后是否能成为单调不降序列或单调不增序列. 对任一序列,先假设其可改造为单调不降序列,若成立则输出YES,不成立再假设其可改造为单调不增序列,若成立则输出 ...

  6. Eugeny and Array(水题,注意题目描述即可)

    Eugeny has array a = a1, a2, ..., an, consisting of n integers. Each integer ai equals to -1, or to ...

  7. Educational Codeforces Round 69 (Rated for Div. 2) C. Array Splitting 水题

    C. Array Splitting You are given a sorted array

  8. Distinct Substrings SPOJ - DISUBSTR(后缀数组水题)

    求不重复的子串个数 用所有的减去height就好了 推出来的... #include <iostream> #include <cstdio> #include <sst ...

  9. [CTS2019]珍珠(NTT+生成函数+组合计数+容斥)

    这题72分做法挺显然的(也是我VP的分): 对于n,D<=5000的数据,可以记录f[i][j]表示到第i次随机有j个数字未匹配的方案,直接O(nD)的DP转移即可. 对于D<=300的数 ...

随机推荐

  1. 让camera实现类似cs第一人称视角旋转和位移

    直接把这个脚本挂在摄像机上就可: using System.Collections; using System.Collections.Generic; using UnityEngine; /* * ...

  2. altibase MDB的创建sequence的举例

    create sequence seq_deduct_record_history start with 1 increment by 1 minvalue 1 nomaxvalue;

  3. bzoj 4299 Codechef FRBSUM

    定义一个集合的神秘数为不能表示成这个集合的某个子集和的最小正整数,给一个数列,多次求区间神秘数 $n \leq 100000$ sol: 考虑这个神秘数的性质,可以发现,如果神秘数是 $x$,那么 $ ...

  4. CodeForces - 156D:Clues(矩阵树定理&并查集)

    题意:给定N点,M边,求添加最少的边使之变为连通图的方案数. 思路:注意题目给出的M边可能带环,即最后生成的不一定是一棵树.但是影响不大.根据矩阵树定理,我们知道生成树的数量=N^(N-2),即点数^ ...

  5. ACM学习历程—HDU5696 区间的价值(分治 && RMQ && 线段树 && 动态规划)

    http://acm.hdu.edu.cn/showproblem.php?pid=5696 这是这次百度之星初赛2B的第一题,但是由于正好打省赛,于是便错过了.加上2A的时候差了一题,当时有思路,但 ...

  6. 自定义Django Command

    转: django的command命令是要放在一个app的management/commands目录下.python2环境中,请确保management和management/commands目录内都 ...

  7. 修改分区后的 Grub rescue

    声明:这里用到的知识不是原创,综合了几篇教程的成果.找的时候比较混乱,所以来源已经不确定.希望原作者见谅. 系统是Windows 8.1 和 Ubuntu 14.04, Windows是先装的, gr ...

  8. 在Linux上利用core dump和GDB调试segfault

    时常会遇到段错误(segfault),调试非常费劲,除了单元测试和基本测试外,有些时候是在在线环境下,没有基本开发和测试工具,这就需要调试的技能.以前介绍过使用strace进行系统调试和追踪<l ...

  9. POJ1159:动态规划

    Palindrome Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 60290   Accepted: 20998 Desc ...

  10. EM算法以及推导

    EM算法 Jensen不等式 其实Jensen不等式正是我们熟知的convex函数和concave函数性质,对于convex函数,有 \[ \lambda f(x) + (1-\lambda)f(y) ...