#include<iostream>
using namespace std;
int Maxsum(int*a, int n);
int main()
{
int T,n,i,j,count=0,thissum,maxsum,redex1,redex0,redex2;
cin >> T;
while (T--)
{
count++;
int a[100000];
cin >> n;
for (i = 0; i < n; i++)
cin >> a[i];
cout<<"Case "<<count<<":"<<endl;
thissum =0,maxsum=a[0];
redex1 =redex0=redex2 =0;//redex0,redex1,redex3记录下标
thissum=0;maxsum=a[0];
for (i = 0; i < n; i++)
{
thissum+=a[i];     //从开始向右累加
if(thissum>maxsum)
{
redex1=redex0;     //将redex1更新
maxsum=thissum;//将最大子序列更新
redex2=i;            //记录末尾行标redex2
}
if(thissum<0){
thissum=0;      //如果<0则这一序列不可能是后面增大,于是摒弃
redex0=i+1;//若这一位为止thissum<0那么redex0记录到下一位
}
}
cout<<maxsum<<" "<<redex1+1<<" "<<redex2+1<<endl;
if(T!=0)
cout<<endl;
}
}

hdu1003(C++)解法1的更多相关文章

  1. alias导致virtualenv异常的分析和解法

    title: alias导致virtualenv异常的分析和解法 toc: true comments: true date: 2016-06-27 23:40:56 tags: [OS X, ZSH ...

  2. Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法

    本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...

  3. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  4. Guass列选主元消去法和三角分解法

    最近数值计算学了Guass列主消元法和三角分解法解线性方程组,具体原理如下: 1.Guass列选主元消去法对于AX =B 1).消元过程:将(A|B)进行变换为,其中是上三角矩阵.即: k从1到n-1 ...

  5. Hanoi问题java解法

    用什么语言解法都差不多,思路都是一样,递归,这其中只要注重于开始和结果的状态就可以了,对于中间过程,并不需要深究.(我细细思考了一下,还是算了.=_=) 代码其实很简单注重的是思路. 问题描述:有一个 ...

  6. Euler-Maruyama discretization("欧拉-丸山"数值解法)

    欧拉法的来源 在数学和计算机科学中,欧拉方法(Euler method)命名自它的发明者莱昂哈德·欧拉,是一种一阶数值方法,用以对给定初值的常微分方程(即初值问题)求解.它是一种解决常微分方程数值积分 ...

  7. 小明的密码-初级DP解法

    #include #include #include using namespace std; int visited[5][20][9009];// 访问情况 int dp[5][20][9009] ...

  8. 最长下降子序列O(n^2)及O(n*log(n))解法

    求最长下降子序列和LIS基本思路是完全一样的,都是很经典的DP题目. 问题大都类似于 有一个序列 a1,a2,a3...ak..an,求其最长下降子序列(或者求其最长不下降子序列)的长度. 以最长下降 ...

  9. [Architecture] 系统架构正交分解法

    [Architecture] 系统架构正交分解法 前言 随着企业成长,支持企业业务的软件,也会越来越庞大与复杂.当系统复杂到一定程度,开发人员会发现很多系统架构的设计细节,很难有条理.有组织的用一张大 ...

随机推荐

  1. 1、HTML基础总结 part-1

    1.基本标签属性 <html> <!--属性和属性值对大小写不敏感. 不过,万维网联盟在其 HTML 4 推荐标准中推荐小写的属性/属性值. 而新版本的 (X)HTML 要求使用小写 ...

  2. 69、Android 布局中轻松实现图片的全屏、居中、平铺

    public void paint() { if (item.laying_mode != 1)//平铺或者充满 { new AsyncTask<Void, Void, Void>() { ...

  3. Marketing learning-3

    Part five brand mantra: the elevator speed 1.mental map:Portrays brand associations and responses fo ...

  4. plsql 编程基础

    分支 declare --声明变量 a ); b ); c ); begin --开始 a := '小明'; dbms_output.put_line(a); b :; c :; if b > ...

  5. php伪随机数漏洞 以及脚本php_mt_seed的使用教程

    前几天在群里看到了一个题目,发现自己没有接触过这个伪随机数这个漏洞,在此记录下. 搜索这两个函数 mt_scrand() mt_rand() mt_scrand(seed)这个函数的意思,是通过分发s ...

  6. 精通CSS高级Web标准解决方案(7、布局)

    7.1 让设计居中 7.1.1 使用自动空白边让设计居中 <body> <div id="wrapper"> </div> </body& ...

  7. Map 中的EntrySet() ,Map的遍历

      我们循环Map时一般用到EntrySet(),EntrySet() 返回的时Set集合(Set<Map.Entry<K, V>>). 那么这里的有Map.Entry< ...

  8. iOS-@inerface的11条规范写法

    总结一些interface声明时的规范,相关宏的介绍,定义方法时有用的修饰符,编写注释的规范,最终写出一个合格的头文件. 1.读写权限 1.1实例变量的@public,@protected,@priv ...

  9. AGC 26 D Histogram Coloring

    题目 将柱子的高度离散化$\DeclareMathOperator{\dp}{dp}$ 设第 $i$ 根柱子实际高度是 $h_i$,离散化之后的高度是 $g_i$:第 $i$ 高的高度是 $H_i$, ...

  10. BZOJ4555 [Tjoi2016&Heoi2016]求和 【第二类斯特林数 + NTT】

    题目 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + ...