#include<iostream>
using namespace std;
int Maxsum(int*a, int n);
int main()
{
int T,n,i,j,count=0,thissum,maxsum,redex1,redex0,redex2;
cin >> T;
while (T--)
{
count++;
int a[100000];
cin >> n;
for (i = 0; i < n; i++)
cin >> a[i];
cout<<"Case "<<count<<":"<<endl;
thissum =0,maxsum=a[0];
redex1 =redex0=redex2 =0;//redex0,redex1,redex3记录下标
thissum=0;maxsum=a[0];
for (i = 0; i < n; i++)
{
thissum+=a[i];     //从开始向右累加
if(thissum>maxsum)
{
redex1=redex0;     //将redex1更新
maxsum=thissum;//将最大子序列更新
redex2=i;            //记录末尾行标redex2
}
if(thissum<0){
thissum=0;      //如果<0则这一序列不可能是后面增大,于是摒弃
redex0=i+1;//若这一位为止thissum<0那么redex0记录到下一位
}
}
cout<<maxsum<<" "<<redex1+1<<" "<<redex2+1<<endl;
if(T!=0)
cout<<endl;
}
}

hdu1003(C++)解法1的更多相关文章

  1. alias导致virtualenv异常的分析和解法

    title: alias导致virtualenv异常的分析和解法 toc: true comments: true date: 2016-06-27 23:40:56 tags: [OS X, ZSH ...

  2. Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法

    本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...

  3. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  4. Guass列选主元消去法和三角分解法

    最近数值计算学了Guass列主消元法和三角分解法解线性方程组,具体原理如下: 1.Guass列选主元消去法对于AX =B 1).消元过程:将(A|B)进行变换为,其中是上三角矩阵.即: k从1到n-1 ...

  5. Hanoi问题java解法

    用什么语言解法都差不多,思路都是一样,递归,这其中只要注重于开始和结果的状态就可以了,对于中间过程,并不需要深究.(我细细思考了一下,还是算了.=_=) 代码其实很简单注重的是思路. 问题描述:有一个 ...

  6. Euler-Maruyama discretization("欧拉-丸山"数值解法)

    欧拉法的来源 在数学和计算机科学中,欧拉方法(Euler method)命名自它的发明者莱昂哈德·欧拉,是一种一阶数值方法,用以对给定初值的常微分方程(即初值问题)求解.它是一种解决常微分方程数值积分 ...

  7. 小明的密码-初级DP解法

    #include #include #include using namespace std; int visited[5][20][9009];// 访问情况 int dp[5][20][9009] ...

  8. 最长下降子序列O(n^2)及O(n*log(n))解法

    求最长下降子序列和LIS基本思路是完全一样的,都是很经典的DP题目. 问题大都类似于 有一个序列 a1,a2,a3...ak..an,求其最长下降子序列(或者求其最长不下降子序列)的长度. 以最长下降 ...

  9. [Architecture] 系统架构正交分解法

    [Architecture] 系统架构正交分解法 前言 随着企业成长,支持企业业务的软件,也会越来越庞大与复杂.当系统复杂到一定程度,开发人员会发现很多系统架构的设计细节,很难有条理.有组织的用一张大 ...

随机推荐

  1. leetcode 【 Subsets 】python 实现

    题目: Given a set of distinct integers, S, return all possible subsets. Note: Elements in a subset mus ...

  2. PostgreSQL 行排序详解

    在查询生成输出表之后,也就是在处理完选择列表之后,你还可以对输出表进行排序. 如果没有排序,那么行将以不可预测的顺序返回(实际顺序将取决于扫描和连接规划类型和在磁盘上的顺序, 但是肯定不能依赖这些东西 ...

  3. Android简单的BaseExpandableList使用

    1.Activity package com.example.administrator.mystudent.ExpandableListView; import android.app.Expand ...

  4. Python获取程序运行目录和脚本目录

    Python获取程序运行目录和脚本目录 import os import sys #获取脚本所在目录 print os.path.split( os.path.realpath( sys.argv[0 ...

  5. table单元格内容过多换行显示

    <table class="am-table am-table-striped am-table-hover table-main am-table-compact " st ...

  6. hihoCoder #1809 : 本题数据范围五千

    Analysis (一) 猜想:答案跟 $q_1, q_2, q_3$ 无关:考虑排列 $q$ 是 $1, 2, 3$ 的情况,此时符合要求的排列 $p$ 实际上满足: 对于任意 $i < j ...

  7. BZOJ2194 快速傅立叶之二 【fft】

    题目 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非负整数. 输入格式 ...

  8. Codeforces Round #364 (Div. 2) A 水

    A. Cards time limit per test 1 second memory limit per test 256 megabytes input standard input outpu ...

  9. android在JNI_OnLoad入口函数下断点动态调试so库

    一般来说,很多APK的校验代码,都会在程序运行的时候自动加载一些动态so库,然后执行这些库中的校验代码.所以为了能够通过程序的校验,我们必须在执行这些函数之前下断点——理想的方法就是在JNI_OnLo ...

  10. django model:auto_now_add 和 auto_now

    创建django的model时,有DateTimeField.DateField和TimeField三种类型可以用来创建日期字段,其值分别对应着datetime().date().time()三中对象 ...