Solution

首先我们要有敏锐的直觉: 我们将每一列中不选哪种颜色看作是一个序列, 则我们发现这个序列要求相邻两位的颜色不同. 我们还发现, 一个这样的序列对应两种不同的合法的棋盘, 因此统计合法棋盘数的问题, 就转化为了统计合法序列数.

我们不妨设\(R > G > B\). 我们可以用R将这个序列切成\(R - 1\)或\(R\)或\(R + 1\)段, 这取决于序列的开头/结尾是否放R. 一旦确定了序列开头和结尾是否放R, 我们在后面就只考虑在序列中间放R, 而不考虑开头和结尾. 每一段由G和B交错组成. 我们将这些由G和B组成的段分为以下三类:

  • GBGBGB...GB 或 BGBGBG...BG, 即B的个数与G的个数相同. 我们记这样的段有\(x\)段.
  • GBGB...GBG, 即G的个数比B多\(1\). 我们记这样的段有\(y\)段.
  • BGBG...BGB, 即B的个数比G多1. 我们记这样的段有\(z\)段.

则我们发现\(y - z\)的值是固定的: \(y - z = G - B\).

我们假设\(R\)将该序列分为\(d\)段(根据前文, \(或或d = R - 1或d = R + 1或d = R\)), 则\(x + y + z = d\). 我们再枚举\(x\), 则\(y\)与\(z\)的数量也被确定了. 我们把第二和第三种情况的序列补全为G和B数量相等的情况, 则现在我们总共有\(\frac{G + B + y + z}{2}\)对GB或BG.

我们用插板法在这些BG或GB中插入\(d - 1\)个R即可.

#include <cstdio>
#include <algorithm> using namespace std;
const int M = (int)1e6, MOD = (int)1e9 + 7;
int pw[M + 1], fac[M + 1], facInv[M + 1];
inline int C(int a, int b)
{
if (a < b) return 0;
return (long long)fac[a] * facInv[a - b] % MOD * facInv[b] % MOD;
}
inline int getInverse(int a)
{
int res = 1;
for (int x = MOD - 2; x; a = (long long)a * a % MOD, x >>= 1) if (x & 1) res = (long long)res * a % MOD;
return res;
}
inline int work(int d, int x, int y)
{
int ans = 0;
for (int a = 0; a <= d - (x - y); ++ a) if (((d - a) - (x - y)) % 2 == 0)
{
int c = ((d - a) - (x - y)) / 2, b = x - y + c;
ans = (ans + (long long)C((x + y + b + c) / 2 - 1, d - 1) * C(d, a) % MOD * C(b + c, b) % MOD * pw[a] % MOD) % MOD;
}
return ans;
}
int main()
{ #ifndef ONLINE_JUDGE freopen("board.in", "r", stdin);
freopen("board.out", "w", stdout); #endif pw[0] = 1; for (int i = 1; i <= M; ++ i) pw[i] = pw[i - 1] * 2 % MOD;
fac[0] = facInv[0] = 1; for (int i = 1; i <= M; ++ i) fac[i] = (long long)fac[i - 1] * i % MOD, facInv[i] = getInverse(fac[i]);
int T; scanf("%d", &T);
for (int cs = 0; cs < T; ++ cs)
{
int m, R, G, B; scanf("%d%d%d%d", &m, &R, &G, &B);
R = m - R; G = m - G; B = m - B;
if (G < B) swap(G, B);
if (R < G) swap(R, G);
if (G < B) swap(G, B);
int ans = (long long)2 * ((long long)work(R - 1, G, B) + 2 * work(R, G, B) + work(R + 1, G, B)) % MOD;
printf("%d\n", ans);
}
}

NOI模拟题4 Problem C: 填格子(board)的更多相关文章

  1. NOI模拟题1 Problem A: sub

    题面 Sample Input 5 7 2 -1 -3 1 1 1 2 1 3 3 4 3 5 2 1 3 0 2 1 2 1 2 1 1 -3 2 Sample Output 2 4 5 2 HIN ...

  2. NOI模拟题6 Problem C: Circle

    Solution 首先这个矩阵, 很明显的就是Vandermonde矩阵. 我们有公式: \[ |F_n| = \prod_{1 \le j < i \le n} (a_i - a_j) \] ...

  3. NOI模拟题5 Problem A: 开场题

    Solution 注意到\(\gcd\)具有结合律: \[ \gcd(a, b, c) = \gcd(a, \gcd(b, c)) \] 因此我们从后往前, 对于每个位置\(L\), 找到每一段不同的 ...

  4. NOI模拟题4 Problem B: 小狐狸(fox)

    Solution 考虑分开统计朝向每一个方向的所有狐狸对答案的贡献. 比如说以向右为例, 我们用箭标表示每一只狐狸的方向, 用\('\)表示当前一步移动之前的每一只狐狸的位置. \[ \begin{a ...

  5. NOI模拟题4 Problem A: 生成树(mst)

    Solution 我们考虑答案的表达式: \[ ans = \sqrt{\frac{\sum_{i = 1}^{n - 1} (w_i - \overline{w})^2}{n - 1}} \] 其中 ...

  6. 花海漫步 NOI模拟题

    题目好像难以看懂? 题目大意 给出一个字符串\(S\),统计满足以下条件的\((i,j,p,q)\)的数量. \(i \leq j, p \leq q\) \(S[i..j],S[p..q]\)是回文 ...

  7. 神奇的矩阵 NOI模拟题

    神奇的矩阵 题目大意 有一个矩阵\(A\),第一行是给出的,接下来第\(x\)行,第\(y\)个元素的值为数字\(A_{x-1,y}\)在\(\{A_{x-1,1},A_{x-1,2},A_{x-1, ...

  8. Western Subregional of NEERC, Minsk, Wednesday, November 4, 2015 Problem K. UTF-8 Decoder 模拟题

    Problem K. UTF-8 Decoder 题目连接: http://opentrains.snarknews.info/~ejudge/team.cgi?SID=c75360ed7f2c702 ...

  9. 2010-2011 ACM-ICPC, NEERC, Moscow Subregional Contest Problem I. Interest Targeting 模拟题

    Problem I. Interest Targeting 题目连接: http://codeforces.com/gym/100714 Description A unique display ad ...

随机推荐

  1. 03018_监听器Listener

    1.什么是监听器? (1)监听器就是监听某个对象的状态变化的组件: (2)监听器的相关概念 ①事件源:被监听的对象------三个域对象:request.session.ServletContext ...

  2. windows控制台主题美化工具-colortool

    最近在win10上装了 wsl 系统,发现界面主题太挫,文件夹颜色很不清晰 . 特此在网上搜索了一下,发现了 colortool 这个工具 这是微软官方提供的用于控制台配色的程序 发布版本地址:htt ...

  3. java web知识点

    java web知识点 1.Java知识点 基本数据类型,面向对象,异常,IO,NIO,集合,多线程,JVM,高级特性. 2.web知识点 JSP,Serlvet,JDBC,Http 掌握Cookie ...

  4. noip 2018 d2t1 旅行

    noip 2018 d2t1 旅行 (题目来自洛谷) 给定n个城市,m条双向道路的图, 不存在两条连接同一对城市的道路,也不存在一条连接一个城市和它本身的道路.并且, 从任意一个城市出发,通过这些道路 ...

  5. JavaWeb笔记(一)JDBC

    基本步骤 导入MySQL驱动jar包 mysql-connector-java-8.0.15.zip 注册驱动 获取数据库连接对象Connection 定义sql 获取执行sql语句的对象Statem ...

  6. zookeeper 集群

    集群步骤: 1.安装zookeeper 2.修改zookeeper配置文件 3.创建myid文件 安装zookeeper:查看安装步骤 修改zookeeper配置文件:在zoo.cfg中添加配置 se ...

  7. myeclipse搭建activemq 简单聊天

    需要一起交流的请加群qq:200634530

  8. 34条简单的SQL优化准则

    转载地址:http://bbs.csdn.net/topics/260002113 我们要做到不但会写SQL,还要做到写出性能优良的SQL,以下为笔者学习.摘录.并汇总部分资料与大家分享!(1)    ...

  9. HDU 2896 病毒侵袭(AC自动机水)

    病毒侵袭 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  10. [MUTC2013][bzoj3513] idiots [FFT]

    题面 传送门 思路 首先有一个容斥原理的结论:可以组成三角形的三元组数量=所有三元组-不能组成三角形的三元组 也就是说我们只要求出所有不能组成三角形的三元组即可 我们考虑三元组(a,b,c),a< ...