题目链接:http://codeforces.com/contest/699/problem/D

D. Fix a Tree
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

A tree is an undirected connected graph without cycles.

Let's consider a rooted undirected tree with n vertices, numbered 1 through n.
There are many ways to represent such a tree. One way is to create an array with n integers p1, p2, ..., pn,
where pi denotes
a parent of vertex i (here, for convenience a root is considered its own parent).

For
this rooted tree the array p is [2, 3, 3, 2].

Given a sequence p1, p2, ..., pn,
one is able to restore a tree:

  1. There must be exactly one index r that pr = r.
    A vertex r is a root of the tree.
  2. For all other n - 1 vertices i,
    there is an edge between vertex i and vertex pi.

A sequence p1, p2, ..., pn is
called valid if the described procedure generates some (any) rooted tree. For example, for n = 3 sequences (1,2,2), (2,3,1) and (2,1,3) are
not valid.

You are given a sequence a1, a2, ..., an,
not necessarily valid. Your task is to change the minimum number of elements, in order to get a valid sequence. Print the minimum number of changes and an example of a valid sequence after that number of changes. If there are many valid sequences achievable
in the minimum number of changes, print any of them.

Input

The first line of the input contains an integer n (2 ≤ n ≤ 200 000) —
the number of vertices in the tree.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n).

Output

In the first line print the minimum number of elements to change, in order to get a valid sequence.

In the second line, print any valid sequence possible to get from (a1, a2, ..., an) in
the minimum number of changes. If there are many such sequences, any of them will be accepted.

Examples
input
4
2 3 3 4
output
1
2 3 4 4
input
5
3 2 2 5 3
output
0
3 2 2 5 3
input
8
2 3 5 4 1 6 6 7
output
2
2 3 7 8 1 6 6 7

题意:

有n个节点,给出每个点的父节点。问至少修改多少个节点的父节点,使得这些节点刚好构成一棵树?

题解:

1.经过分析,假设在初始状态有k个集合,那么对于每一个集合,它要么是一棵根节点的父节点为自己的树,要么是一棵根节点的父节点为其子孙的树(虽然不是树,但姑且这么叫,便于理解)。

2.首先用并查集使得每个集合“现出原形”,得到集合后,需要选一个根节点,作为最终树的根节点,父节点为自己的根节点优先被选择,然后再把其他根节点的 父节点改为最终树的根节点。如果选另一种,就需要把它的父节点改为自己,真正作为根节点(这个集合就真真正正是一棵树了)后,再把其他根节点的父节点改为最终树的根节点,这样就多了一次修改。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <sstream>
#include <algorithm>
using namespace std;
#define ms(a, b) memset((a), (b), sizeof(a))
typedef long long LL;
const double eps = 1e-;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int maxn = +; int fa[maxn], a[maxn], b[maxn];
int n; int find(int x) { return fa[x]==x? fa[x]=x:find(fa[x]); } void init()
{
scanf("%d",&n);
for(int i = ; i<=n; i++)
scanf("%d",&a[i]), b[i] = a[i], fa[i] = i;
} void solve()
{
for(int i = ; i<=n; i++)
{
int u = a[i], v = i;
int m1 = find(u);
int m2 = find(v); if(m1!=m2)
fa[m2] = m1;
} int rt = ;
for(int i = ; i<=n; i++)
if(fa[i]==i && a[i]==i)
{
rt = i;
break;
} for(int i = ; i<=n; i++)
{
if(fa[i]==i)
{
if(!rt)
rt = i, a[i] = i;
else
a[i] = rt;
}
} int ans = ;
for(int i = ; i<=n; i++)
if(a[i]!=b[i])
ans++; printf("%d\n",ans);
for(int i = ; i<=n; i++)
printf("%d ",a[i]);
} int main()
{
// int T;
// scanf("%d",&T);
// while(T--)
{
init();
solve();
}
return ;
}

Codeforces Round #363 (Div. 2) D. Fix a Tree —— 并查集的更多相关文章

  1. Codeforces Round #363 (Div. 2)D. Fix a Tree(并查集)

    D. Fix a Tree time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  2. Codeforces Round #363 (Div. 2) 698B Fix a Tree

    D. Fix a Tree time limit per test 2 seconds memory limit per test 256 megabytes     A tree is an und ...

  3. Codeforces Round #363 (Div. 1) B. Fix a Tree 树的拆环

    题目链接:http://codeforces.com/problemset/problem/698/B题意:告诉你n个节点当前的父节点,修改最少的点的父节点使之变成一棵有根树.思路:拆环.题解:htt ...

  4. Codeforces Round #181 (Div. 2) B. Coach 带权并查集

    B. Coach 题目连接: http://www.codeforces.com/contest/300/problem/A Description A programming coach has n ...

  5. Codeforces Round #345 (Div. 1) C. Table Compression dp+并查集

    题目链接: http://codeforces.com/problemset/problem/650/C C. Table Compression time limit per test4 secon ...

  6. Codeforces Round #346 (Div. 2) F. Polycarp and Hay 并查集 bfs

    F. Polycarp and Hay 题目连接: http://www.codeforces.com/contest/659/problem/F Description The farmer Pol ...

  7. Codeforces Round #375 (Div. 2) D. Lakes in Berland 并查集

    http://codeforces.com/contest/723/problem/D 这题是只能把小河填了,题目那里有写,其实如果读懂题这题是挺简单的,预处理出每一块的大小,排好序,从小到大填就行了 ...

  8. Codeforces Round #603 (Div. 2) D. Secret Passwords(并查集)

    链接: https://codeforces.com/contest/1263/problem/D 题意: One unknown hacker wants to get the admin's pa ...

  9. Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 并查集求奇偶元环

    D. Dividing Kingdom II   Long time ago, there was a great kingdom and it was being ruled by The Grea ...

随机推荐

  1. 可能是全网最详细的express--middleware

    写在前面 hello,小伙伴们,我是你们的pubdreamcc,本篇博文出至于我的GitHub仓库node学习教程资料,欢迎小伙伴们点赞和star,你们的点赞是我持续更新的动力. GitHub仓库地址 ...

  2. codevs贪吃的九头龙

    传说中的九头龙是一种特别贪吃的动物.虽然名字叫“九头龙”,但这只是说它出生的时候有九个头,而在成长的过程中,它有时会长出很多的新头,头的总数会远大于九,当然也会有旧头因衰老而自己脱落.有一天,有M 个 ...

  3. [Violet 4] 毕业旅行

    2718: [Violet 4]毕业旅行 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 672  Solved: 389[Submit][Status ...

  4. spring ConfigurableListableBeanFactory 接口

    接口继承关系如上图. ConfigurableListableBeanFactory具体: 1.2个忽略自动装配的的方法. 2.1个注册一个可分解依赖的方法. 3.1个判断指定的Bean是否有资格作为 ...

  5. Spring异步任务处理,@Async的配置和使用

    本文转自http://blog.csdn.net/clementad/article/details/47403185 感谢作者 这个注解用于标注某个方法或某个类里面的所有方法都是需要异步处理的.被注 ...

  6. ios 使用 resignFirstResponder 无法hide键盘

    - (BOOL)disablesAutomaticKeyboardDismissal {    return NO;}

  7. 利用VideoView播放视频

    package com.qianhua.ui; 002   003 import android.app.Activity; 004 import android.content.Intent; 00 ...

  8. .net 4.0 网站发布(转)

    http://www.cnblogs.com/daomul/archive/2013/05/23/3095232.html 1. 进入解决方案的web项目下,右击项目选择 "发布(B)&qu ...

  9. UVA 11578 - Situp Benches(dp)

    题目链接:11578 - Situp Benches 题意:健♂身♂房有两个仰卧起坐坐垫,每次调整角度要花费10元/10度,每次使用要花费15,如今给定n个人的时间顺序,和所希望的角度,求最少花费 思 ...

  10. 内核顶层Makefile相关2

    http://www.groad.net/bbs/simple/?f104.html if  函数 if 函数的语法有两种形式: () $(if <condition>, <then ...