题目传送门

题目大意:给你一个\(n\)*\(m\)的矩阵,每个位置都有一个数,求有多少不同的子矩阵使得矩阵内所有数的和是\(k\)的倍数。

数据范围给的非常友好233,期望得到的暴力分:75分。前12个点可以用\(O(n^4)\)算法水过,对于\(<=400\)的有特殊性质2的数据,我们还可以尝试苟一下,开始用了一个什么鬼方法(?),其实我们只要枚举所有可能的矩形面积判断一下是否满足条件再加上这种矩形面积的所有可能数就行啦。

#include<cstdio>
#include<algorithm> using namespace std;
typedef long long ll; int n,m,k;
ll ans,mapp[450][450]; ll gcd(ll a,ll b)
{
return b ? gcd(b,a % b) : a ;
} void calc(ll a,ll lima,ll b,ll limb)
{
ll cnt1=lima-a+1;
ll cnt2=limb-b+1;
ans+=cnt1*cnt2;
} int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%lld",&mapp[i][j]);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
mapp[i][j]+=mapp[i-1][j]+mapp[i][j-1]-mapp[i-1][j-1];
if(n<=80||m<=2)
{
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
for(int l=1;l<=n&&i-l+1>=1;l++)
for(int r=1;r<=m&&j-r+1>=1;r++)
{
int ii=i-l+1,jj=j-r+1;
ll sum=mapp[i][j]+mapp[ii-1][jj-1]-mapp[ii-1][j]-mapp[i][jj-1];
if(sum%k==0) ans++;
}
printf("%lld\n",ans);
return 0;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if((i*j*mapp[1][1])%k==0) calc(i,n,j,m);
printf("%lld\n",ans);
return 0;
}

其实做这道题的时候感觉和昨天考试T1比较像的,我们可以很容易的想出\(O(n^4)\)算法,再根据一些性质(如单调性)优化到\(O(n^3)\)。本题要求的复杂度同样是\(O(n^3)\)。

由“\(k\)的倍数”我们可以想到另一道题:ZR某次普及膜底赛当时chengni dalao给我讲了子共七的思想,虽说后来讲了子共七那道原题,还是没A==。

我们考虑在一维序列上的情况,若\(sum[i]\)模\(k\)等于\(A\),之后出现了一个\(sum[j]\)模\(k\)也等于\(A\),那么显然有\([i+1,j]\)这部分的和是\(k\)的倍数(模\(k\)为\(0\))。

我们可以推广到矩阵上的情况,像昨天一样枚举矩阵的上下界,再枚举一个左右边界,统计余数个数,这样能把复杂度压到\(O(n^3)\)。每次的计数数组要清空,但是用\(memset\)会超时,不妨用数组记录一下空间换时间。

#include<cstdio>
#include<algorithm>
#include<cstring> using namespace std;
typedef long long ll; int n,m,moder;
ll ans,f[1000][1000],tong[1000090],b[1000090]; int main()
{
scanf("%d%d%d",&n,&m,&moder);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%lld",&f[i][j]);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
(f[i][j]+=f[i-1][j]+f[i][j-1]-f[i-1][j-1]+moder)%=moder;
for(int i=0;i<n;i++)//注意是从0开始枚举
for(int j=i+1;j<=n;j++)
{
tong[0]=1;
for(int k=1;k<=m;k++)
{
b[k]=(f[j][k]-f[i][k]+moder)%moder;
ans+=tong[b[k]]++;
}
for(int k=1;k<=m;k++) tong[b[k]]=0;
}
printf("%lld\n",ans);
return 0;
}

矩阵+前缀和思路:

发现题目中的单调性

当问“倍数”时,考虑取膜,与前缀和结合计数

另外敲敲说一句 看到入阵曲/星空/将军令这三首歌题的时候激动了一下==!

Luogu P3941 入阵曲【前缀和】By cellur925的更多相关文章

  1. [luogu]P3941 入阵曲[前缀和][压行]

    [luogu]P3941 入阵曲 题目描述 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时候,觉得整个世界都焕然 ...

  2. luogu P3941 入阵曲

    嘟嘟嘟 这道题我觉得跟最大子矩阵那道题非常像,都是O(n4)二维前缀和暴力很好想,O(n3)正解需要点转化. O(n4)暴力就不说啦,二维前缀和,枚举所有矩形,应该能得55分. O(n3)需要用到降维 ...

  3. 【思维】Luogu P3941 入阵曲

    题目大意 洛谷链接 给出一个矩阵和 \(K\) ,问有多少子矩阵中的元素和能整除 \(K\). 数据范围 \(2\leq n,m\leq 400\),\(0\leq K\leq 10^6\). 思路 ...

  4. [洛谷P3941]:入阵曲(前缀和+桶)

    题目传送门 题目背景 丹青千秋酿,一醉解愁肠.无悔少年枉,只愿壮志狂. 题目描述 小$F$很喜欢数学,但是到了高中以后数学总是考不好.有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识 ...

  5. 洛谷P3941入阵曲

    题目传送门 这道题也是今年湖南集训队Day8的第一题,昨天洛谷的公开赛上又考了一遍,来发个记录(其实是因为五月天,另外两道题分别是将军令和星空,出这次题目的人肯定同为五迷(✪㉨✪)) 话不多说.先理解 ...

  6. P3941 入阵曲

    \(\color{#0066ff}{ 题目描述 }\) 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时候,觉得整 ...

  7. 落谷P3941 入阵曲

    题目背景 pdf题面和大样例链接:http://pan.baidu.com/s/1cawM7c 密码:xgxv 丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂. 题目描述 小 F 很喜欢数学,但是到 ...

  8. [洛谷P3941] 入阵曲

    题目背景 丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂. 入阵曲 题解在代码里. #include<iostream> #include<cstdio> #include& ...

  9. 题解 P3941 入阵曲

    题解 观察数据范围,可以 \(\mathcal O(n^2m^2)\) 暴力计算,而加上特殊性质,则可以骗到 \(75pts\) 正解: 我们发现,在一维情况下,\(\mod k\) 相同的前缀和相减 ...

随机推荐

  1. [egret+pomelo]实时游戏杂记(3)

    [egret+pomelo]学习笔记(1) [egret+pomelo]学习笔记(2) [egret+pomelo]学习笔记(3) 服务端的请求流程走完了一遍,下面就该看一下,在目前的服务端中,各服务 ...

  2. blog真正的首页

    声明:此Django分类下的教程是追梦人物所有,地址http://www.jianshu.com/u/f0c09f959299,本人写在此只是为了巩固复习使用 上一节我们阐明了django的开发流程, ...

  3. python的上下文管理器-1

    reference:https://zhuanlan.zhihu.com/p/26487659 来看看如何正确关闭一个文件. 普通版: def m1(): f = open("output. ...

  4. visual studio code使用MSVC编译C++

    环境 OS::Microsoft Windows [Version 10.0.17134.285] x64 VSC:Version:1.27.2 (system setup) VS:2017 心血来潮 ...

  5. 【Matlab】调试基础

    1.matlab 调试子程序 在主程序进入子程序前一句加断点,然后step in,可以进入子程序. 但是直接在子程序里设置断点,运行主程序是不能进入子程序的.

  6. 【Lintcode】102.Linked List Cycle

    题目: Given a linked list, determine if it has a cycle in it. Example Given -21->10->4->5, ta ...

  7. windows下vs2012用gsoap开发webservice实例

    零:说明 1.本文是根据网上前人经验结合自己动手操作写成,开发工具用的vs2012,gsoap用的是gsoap-2.8: 2.gsoap提供的工具简单介绍 1)wsdl2h.exe:根据WSDL文件生 ...

  8. 洛谷P1525关押罪犯——并查集

    题目:https://www.luogu.org/problemnew/show/P1525 并查集+贪心,从大到小排序,将二人分在不同房间,找到第一个不满足的即为答案. 代码如下: #include ...

  9. 面向对象——final关键字

    继承的弊端:打破了封装性 解决方式:final final关键字的特点: 1.final是一个修饰符,即可以修饰类,也可以修饰方法,还可以修饰变量 2.final修饰的类不可以被继承 3.final修 ...

  10. Docker入门(六):Stacks

    这个<Docker入门系列>文档,是根据Docker官网(https://docs.docker.com)的帮助文档大致翻译而成.主要是作为个人学习记录.有错误的地方,Robin欢迎大家指 ...