【BZOJ4476】[Jsoi2015]送礼物

Description

JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物。
萌萌的礼品店很神奇,所有出售的礼物都按照特定的顺序都排成一列,而且相邻的礼物之间有一种神秘的美感。于是,JYY决定从中挑选连续的一些礼物,但究竟选哪些呢?
【问题描述】
假设礼品店一共有N件礼物排成一列,每件礼物都有它的美观度。排在第i1< =i< =N个位置的礼物美观度为正整数Ai,。JYY决定选出其中连续的一段,即编号为礼物i,i+1,…,j-1,j的礼物。选出这些礼物的美观程度定义为
(M(i,j)-m(i,j))/(j-i+k)
其中M(i,j)表示max{Ai,Ai+1....Aj},m(i,j)表示min{Ai,Ai+1....Aj},K为给定的正整数。
由于不能显得太小气,所以JYY所选礼物的件数最少为L件;同时,选得太多也不好拿,因此礼物最多选R件。JYY应该如何选择,才能得到最大的美观程度?由于礼物实在太多挑花眼,JYY打算把这个问题交给会编程的你。

Input

本题每个测试点有多组数据。输入第一行包含一个正整数T(T< =10),表示有T组数据。
每组数据包含两行,第一行四个非负整数N,K,L,R(2< =L< =R< =N。第二行包含N个正整数,依次表示A1,A2....An,(Ai< =10^8),N,K< = 50,000

Output

输出T行,每行一个非负实数,依次对应每组数据的答案,数据保证答案不会超过10^3。输出四舍五入保留4位小数。

Sample Input

1
5 1 2 4
1 2 3 4 5

Sample Output

0.7500

题解:显然先分数规划,然后根据贪心,选出来的区间的最大和最小值一定是在两端的,设最大值为v[i],最小值为v[j],所以式子就变成:

v[i]-v[j]-(i-j+k)*mid>0或v[i]-v[j]-(j-i+k)*mid>0

然后分开讨论,第一个变成求(v[i]-i*mid)-(v[j]-j*mid)的最大值,第二个变成求(v[i]+i*mid)-(v[j]+j*mid)的最大值,题解说可以用单调队列搞定,但是我比较懒,直接用的RMQ。

但是感觉不对?当最大最小值的距离<L时,我们也要将长度视为L,即v[i]-v[j]-(L-1+k)*mid>0,同理,求v[i]-v[j]的最大值即可,依旧RMQ。

所以。。。所以RMQ比单调队列慢。。。所以又光荣的变成status倒数第一,并且时间也很吉利~

(时限30s)

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const double eps=1e-7;
const int maxn=100010;
int n,K,L,R,h,t;
int v[maxn],Log[maxn];
double f1[18][maxn],f2[18][maxn];
int f[18][maxn];
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
double q1(int l,int r)
{
int k=Log[r-l+1];
return min(f1[k][l],f1[k][r-(1<<k)+1]);
}
double q2(int l,int r)
{
int k=Log[r-l+1];
return min(f2[k][l],f2[k][r-(1<<k)+1]);
}
int q(int l,int r)
{
int k=Log[r-l+1];
return min(f[k][l],f[k][r-(1<<k)+1]);
}
bool solve(double sta)
{
int i,j;
double ret=-99999999.9999;
for(i=1;i<=n;i++) f1[0][i]=v[i]-sta*i,f2[0][i]=v[i]+sta*i;
for(j=1;(1<<j)<=n;j++) for(i=1;i+(1<<j)-1<=n;i++)
f1[j][i]=min(f1[j-1][i],f1[j-1][i+(1<<j-1)]),f2[j][i]=min(f2[j-1][i],f2[j-1][i+(1<<j-1)]);
for(i=1;i<=n;i++)
{
if(i>=L) ret=max(ret,f1[0][i]-q1(max(1,i-R+1),i-L+1));
if(i<=n-L+1) ret=max(ret,f2[0][i]-q2(i+L-1,min(n,i+R-1)));
}
for(i=1;i<=n;i++)
{
ret=max(ret,v[i]-q(max(1,i-L+1),min(n,i+L-1))-sta*(L-1));
}
return ret>=K*sta;
}
void work()
{
n=rd(),K=rd(),L=rd(),R=rd();
int i,j;
for(i=1;i<=n;i++) f[0][i]=v[i]=rd();
for(i=2;i<=n;i++) Log[i]=Log[i>>1]+1;
for(j=1;(1<<j)<=n;j++) for(i=1;i+(1<<j)-1<=n;i++) f[j][i]=min(f[j-1][i],f[j-1][i+(1<<j-1)]);
double l=0,r=1000,mid;
while(r-l>eps)
{
mid=(l+r)/2;
if(solve(mid)) l=mid;
else r=mid;
}
printf("%.4lf\n",l);
return ;
}
int main()
{
int T=rd();
while(T--) work();
return 0;
}

【BZOJ4476】[Jsoi2015]送礼物 分数规划+RMQ的更多相关文章

  1. [BZOJ4476][JSOI2015]送礼物[分数规划+单调队列]

    题意 题目链接 分析 分数规划之后可以得到式子:\(max-min-r*mid+l*mid\geq k*mid\) . 贪心选择,肯定区间的端点是极小或者极大值.特殊处理区间长度 \(\leq L\) ...

  2. [BZOJ4476] [JSOI2015] 送礼物 (01分数规划+ST表)

    [BZOJ4476] [JSOI2015] 送礼物 (01分数规划+ST表) 题面 给出n,k,l,r和序列a,要求从a中选一段连续的区间[i,j]出来,使得M(i,j)-m(i,j)/(j-i+k) ...

  3. BZOJ4476 JSOI2015送礼物(分数规划+单调队列)

    看到这个式子当然先二分答案.得max-min-(j-i+k)ans>=0. 显然max-min相同的情况下所选区间长度越短越好,所以max和min都应该取在边界.那么实际上我们根本不用管端点是否 ...

  4. bzoj4476 [Jsoi2015]送礼物

    化简式子 $M>=m+ans*(r-l+k)$ 发现$M,m$确定时,总区间长度越小越好,于是假定右端点为最小值$M+ans*l>=m+ans*r+ans*k$, 右面都确定了,但最大值仍 ...

  5. BZOJ_4476_[Jsoi2015]送礼物_01分数规划+单调队列

    BZOJ_4476_[Jsoi2015]送礼物_01分数规划+单调队列 Description JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店很神奇,所有出售的 ...

  6. P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表

    P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表 题目背景 \(JYY\) 和 \(CX\) 的结婚纪念日即将到来,\(JYY\) 来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店 ...

  7. luogu P6087 [JSOI2015]送礼物 二分 单调队列 决策单调性

    LINK:送礼物 原本想了一个 \(nlog^2\)的做法 然后由于线段树常数过大 T到30. 以为这道题卡\(log^2\)没想到真的有神仙写\(log^2\)的过了 是我常数大了 抱歉. 能过的\ ...

  8. GDOI#345. 送礼物「JSOI 2015」01分数规划+RMQ

    题目描述 JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物.萌萌的礼品店很神奇,所有出售的礼物都按照特定的顺序都排成一列,而且相邻的礼物之间有一种神秘的美感.于是,JYY决定从中 ...

  9. JSOI 2015 送礼物

    [BZOJ4476] [JSOI2015]送礼物 Description JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店很神奇,所有出售的礼物都按照特定的顺序都 ...

随机推荐

  1. 几个类和Table的方法

    public class TableHelper { public static DataTable CreateTableFromClass(Type t) { DataTable dt = new ...

  2. How to debug Android Native Application with eclipse

    This blog is inspired by this tutorial http://mhandroid.wordpress.com/2011/01/23/using-eclipse-for-a ...

  3. Scrapy学习-15-降低被识别为爬虫的方法

    3种常见的方法 1. 在settings中配置禁用cookies COOKIES_ENABLED = False 2. scrapy限速处理,scrapy为我们提供了扩展模块,它能动态的限制下载速度 ...

  4. Day 22 生成器yield表达式及内置函数(一丢丢)

    本日知识点: ################################### #一.上节课复习:在for循环式,调用对象内部的__iter__方法, # 把他们变成了可迭代对象然后for循环调 ...

  5. Android 实现Activity后台运行

    有时需要让activity在后台运行,具体实现方法如下: 在AndroidManifest.xml中,activity属性中增加: android:theme="@style/Backgro ...

  6. Direct2D教程(一)Direct2D已经来了,谁是GDI的终结者?

    什么是Direct2D 一言以蔽之,就是Windows 7平台上的一个2D图形API,可以提供高性能,高质量的2D渲染.大多数人对Direct2D可能都比较陌生,以至于我之前在论坛上提到这个词的时候, ...

  7. Java HashMap学习笔记

    1.HashMap数据结构 在java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外.HashMap实际 ...

  8. eclipse下的ssh框架整合过程及測试

    最近在搭建Stuts2+hibernate+spring的框架,网上看的教程,大部分都是非常easy的步骤.没有比較具体的步骤以及每一个步骤完毕之后怎样检查是否配置成功.下面是笔者依据自己搭建的过程进 ...

  9. Go语言阅读小笔记,来自知呼达达关于unsafe.Pointer的分享.

    第一式 - 获得Slice和String的内存数据 func stringPointer(s string) unsafe.Pointer { p := (*reflect.StringHeader) ...

  10. javascript原生调用摄像头

    HTML <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta ...