POJ1163(基础线性DP)
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 42547 | Accepted: 25721 |
Description
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5 (Figure 1)
Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.
Input
Output
Sample Input
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
Sample Output
30
#include"cstdio"
#include"cstring"
#include"algorithm"
using namespace std;
const int MAXN=;
const int INF=0x3fffffff;
int n;
int a[MAXN][MAXN];
int dp[MAXN][MAXN];
int main()
{
scanf("%d",&n);
for(int i=;i<n;i++)
for(int j=;j<=i;j++) scanf("%d",&a[i][j]);
for(int i=n-;i>=;i--)
for(int j=;j<=i;j++)
dp[i][j]=max(dp[i+][j],dp[i+][j+])+a[i][j];
printf("%d\n",dp[][]);
return ;
}
POJ1163(基础线性DP)的更多相关文章
- DP基础(线性DP)总结
DP基础(线性DP)总结 前言:虽然确实有点基础......但凡事得脚踏实地地做,基础不牢,地动山摇,,,嗯! LIS(最长上升子序列) dp方程:dp[i]=max{dp[j]+1,a[j]< ...
- 动态规划——线性dp
我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...
- 『最大M子段和 线性DP』
最大M子段和(51nod 1052) Description N个整数组成的序列a[1],a[2],a[3],-,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M &g ...
- 动态规划_线性dp
https://www.cnblogs.com/31415926535x/p/10415694.html 线性dp是很基础的一种动态规划,,经典题和他的变种有很多,比如两个串的LCS,LIS,最大子序 ...
- POJ2779 线性DP 或 杨氏三角 和 钩子公式
POJ2779 线性DP 或 杨氏三角 和 钩子公式 本来就想回顾一下基础的线性DP谁知道今早碰到的都是这种大难题,QQQQ,不会 这个也没有去理解线性DP的解法,了解了杨氏三角和钩子公式,做出了PO ...
- 非常完整的线性DP及记忆化搜索讲义
基础概念 我们之前的课程当中接触了最基础的动态规划. 动态规划最重要的就是找到一个状态和状态转移方程. 除此之外,动态规划问题分析中还有一些重要性质,如:重叠子问题.最优子结构.无后效性等. 最优子结 ...
- Wooden Stricks——两个递增条件的线性DP
题目 一堆n根木棍.每个棒的长度和重量是预先已知的.这些木棒将由木工机械一一加工.机器需要准备一些时间(称为准备时间)来准备处理木棍.设置时间与清洁操作以及更换机器中的工具和形状有关.木工机械的准备时 ...
- 线性DP 学习笔记
前言:线性DP是DP中最基础的.趁着这次复习认真学一下,打好基础. ------------------ 一·几点建议 1.明确状态的定义 比如:$f[i]$的意义是已经处理了前$i个元素,还是处理第 ...
- LightOJ1044 Palindrome Partitioning(区间DP+线性DP)
问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...
随机推荐
- Git经常使用命令
git --version 版本号号git help 帮助gitk 是个图形化的查看工具.gitk --all 所有分支历史-----------------------git pull 先拉git ...
- vs2012编译ffmpeg
从官方网站down下来的ffmpeg没有pdb文件不方便调试,为此使用VS2012编译ffmpeg. 编译步骤: 一.安装MinGW,具体的安装方法上一篇文章已经有介绍这里不在赘述. 二.下载文件并放 ...
- 第14章8节《MonkeyRunner源代码剖析》 HierarchyViewer实现原理-获取控件列表并建立控件树
在上几节的描写叙述中,我们把HierarchyViewer初始化好.也把ViewServer给装备好了.那如今距离获得一个控件去操作它是万事具备仅仅欠东风了,欠了那一股春风了?欠了的是建立控件树这个东 ...
- JavaScript通过正则随机生成电话号码
没有接口,就只能自己模拟Json数据了 恰好需要模拟一些电话号码,我又懒得自己随便写, 不如写一个小功能就用来实现随机生成电话号码 <!DOCTYPE html> <html lan ...
- Django框架学习——python模拟Django框架(转载)
原贴来源 http://wiki.woodpecker.org.cn/moin/ObpLovelyPython/AbtWebModules python实现web服务器 web开发首先要有web服务器 ...
- OpenCV 的四大模块
前言 我们都知道 OpenCV 是一个开源的计算机视觉库,那么里面到底有哪些东西?本文将为你解答这个问题. 模块一:CV 这个模块是 OpenCV 的核心,它包含了基本的图像处理函数和高级的计算机视觉 ...
- 第 2 章 第 2 题 找" 重数/漏数 "问题 位向量实现
问题分析 输入:一个包含了4 300 000 000个32位整数的文件( 其中可能有重复出现的数字 ) 输出:一个在这个文件中重复出现过了的数字 约束:无 解答思路 第一章中,我们学习了如何用位向量进 ...
- codevs1032
题目地址:http://codevs.cn/problem/1032/ 分析: 题目数据有错.这题过不了才正常. 我调了非常久可是就是有两个点过不去.于是我把数据下了下来,找到WA的第五个点和第七个点 ...
- STL algorihtm算法iter_swap(29)
iter_swap原型: std::iter_swap template <class ForwardIterator1, class ForwardIterator2> void ite ...
- Cena使用
打开cena,在工具-选项中,修改G++和GCC的编译命令.格式:[g++目录]g++.exe %s.cpp -o %s.exe [编译选项]例如以下命令使用刚安装的mingw4.8.1 g++编译, ...