P1463 [HAOI2007]反素数
题目描述
对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。
如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。
现在给定一个数N,你能求出不超过N的最大的反质数么?
输入输出格式
输入格式:
一个数N(1<=N<=2,000,000,000)。
输出格式:
不超过N的最大的反质数。
输入输出样例
1000
840
Solution:
本题思路实在是巧妙~~!(膜拜比我小的巨佬——老$K$,他的思路让我受益匪浅!)
第一种思路(其实,准确说是第二种,是先搞懂了搜索的思路才自己琢磨的打表):
首先我们讲下暴力打表,由于数据$n\leq 2*10^9$,于是我们可以线下打表,直接暴力模拟,先根据题目可知$1,2,4,6$都是反质数,所以先输出这$4$个数,记当前最大约数个数$mx$为$4$(即$6$的约数个数),然后从$7$枚举到$2*10^9$,每次判断约数个数是否大于$mx$,大于就更新$mx$并输出该数。表搞完后,其实也没多少个,用数组存下来,然后二分答案找第一个比$n$小的就$OK$了(我打表的代码没有输出,也许机房配置太好了很神奇~~)。
贴一下我的暴力打表程序,显然直接打$1$到$2*10^9$的表肯定行不通,我们先打从$1$到$1000000$的来找规律:
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define For(i,a,b) for(ll (i)=(a);(i)<=(b);(i)++)
#define Max(a,b) ((a)>(b)?(a):(b))
using namespace std;
ll p[]={,,,,},mx=;
il bool get(ll x){
ll ans=;
for(ll i=;i*i<=x;i++){
if(x%i==&&x/i!=i)ans+=;
else if(x%i==&&x/i==i)ans++;
}
//cout<<ans<<endl;
if(mx<ans){
mx=ans;
return ;
}
return ;
}
int main(){
freopen("la.out","w",stdout);
For(i,,)if(get(i)){printf("%lld,",i);}
return ;
}
然后对打出来的数:
$1,2,4,6,12,24,36,48,60,120,180,240,360,720,840,1260,1680,2520,5040,7560,10080,15120,20160,25200,27720,45360,50400,55440,83160,83160,110880,166320,221760,277200,332640,498960,554400,665280,720720$
进行质因数分解:$$1=1$$
$$2=2^1$$
$$4=2^2$$
$$6=2^1*3^1$$
$$12=2^2*3^1$$
$$24=2^3*3^1$$
$$36=2^2*3^2$$
$$48=2^4*3^1$$
$$60=2^2*3^1*5^1$$
$$120=2^3*3^1*5^1$$
$$180=2^2*3^2*5^1$$
$$240=2^4*3^1*5^1$$
$$360=2^3*3^2*5^1$$
$$720=2^4*3^2*5^1$$
$$840=2^3*3^1*5^1*7^1$$
$$1260=2^2*3^2*5^1*7^1$$
$$1680=2^4*3^1*5^1*7^1$$
$$2520=2^3*3^2*5^1*7^1$$
$$5040=2^4*3^2*5^1*7^1$$
$$7560=2^3*3^3*5^1*7^1$$
$$10080=2^5*3^2*5^1*7^1$$
$$15120=2^4*3^3*5^1*7^1$$
$$20160=2^6*3^2*5^1*7^1$$
$$25200=2^4*3^2*5^2*7^1$$
$$27720=2^3*3^2*5^1*7^1*11^1$$
$$45360=2^4*3^4*5^1*7^1$$
$$50400=2^5*3^2*5^2*7^1$$
$$55440=2^4*3^2*5^1*7^1*11^1$$
$$83160=2^3*3^3*5^1*7^1*11^1$$
$$83160=2^3*3^3*5^1*7^1*11^1$$
$$110880=2^5*3^2*5^1*7^1*11^1$$
$$166320=2^4*3^3*5^1*7^1*11^1$$
$$221760=2^6*3^2*5^1*7^1*11^1$$
$$277200=2^4*3^2*5^2*7^1*11^1$$
$$332640=2^5*3^3*5^1*7^1*11^1$$
$$498960=2^4*3^4*5^1*7^1*11^1$$
$$554400=2^5*3^2*5^2*7^1*11^1$$
$$665280=2^6*3^3*5^1*7^1*11^1$$
$$720720=2^4*3^2*5^1*7^1*11^1*13^1$$
容易发现将质数从小到大排,指数会单调不上升(其实后面老$K$的思路用到了这个性质),那么根据这个东西我们可以线下贪心打表前$12$个质数的幂累乘的形式(幂单调不上升),就能处理出所有的$\leq 2*10^9$的反质数。然后将打表出的数据用数组存下,查询时直接模拟就好了。(打表的代码和下面的搜索代码其实类似,我们可以依次枚举指数保证不上升,然后累乘出的数就是反质数,比较简单就不贴代码了)
贴一个最后的反质数表:
#include<bits/stdc++.h>
using namespace std;
int p[]={,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,};
int main()
{
int n;
cin>>n;
int ans;
for(int i=;;i++)
{
if(p[i]>n) {
cout<<p[i-]<<endl;
return ;
}
}
}
然后讲讲第二种炒鸡玩美的思路:
1、对于一个数$x$,我们根据唯一分解定理,可以将$x$分解为质数的幂相乘的形式:$x=\prod{p_i^{k_i}}$,其中$p_i$为质数。
2、将数$x$唯一分解表示后,则$x$的约数个数$=\prod{(k_i+1)}$(这个证明很简单,$x$的因子是$x$将唯一分解后的质数改变指数相乘得来,质数$p_i$的指数从$0$到$k_i$共$k_i+1$种情况,所以总的约数个数为$k_i+1$的累乘)。
3、我们不妨将$p_i$从小到大排列(即保证$p_i>p_{i-1}$),那么不难发现当$d<f$且$k_d<k_f$时一定不是反质数,证明很简单:
$\because x=\prod{p_i^{k_i}}$且$p_i$单调递增
又$\because d<f,\; k_d<k_f$,$x$的约数个数$sum_x=\prod{(k_i+1)}$
$\therefore $一定可以构造一个数$y$,使得$sum_y=sum_x$,只需交换$p_d,p_f$的指数$k_d,k_f$即可
又$\because p_i$单调递增
$\therefore sum_y<sum_x$,那么$g(x)=g(y)$,而$x>y$,显然$x$不可能为一个反质数。(举栗:$2*3^3<2^3*3$,而它们约数个数均为$8$个,显然$2*3^3$不可能是反质数)
由上面的证明我们得到一个反质数$q$唯一分解后将$p_i$递增排列,对应的指数$k_i$一定单调不上升。
因为前$12$个素数的乘积已经爆$2*10^9$,于是我们处理出前$12$个素数,然后$dfs$搜索枚举各质数的指数,判断$ans$即可。
(具体实现看代码,$ORZ——LK$,被低两个年级的人吊打,好虚啊~)
代码:
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
using namespace std;
const int prime[]={,,,,,,,,,,,,};
ll n,ans,mx;
il void dfs(int nu,int qnu,ll t,ll tot){
if(t>mx||t==mx&&tot<ans)ans=tot,mx=t; //当约数个数t大于当前最大约数个数或者约数个数相等且这个数小于当前答案时,更新答案和约数个数最大值
ll sum=tot,i=,nt=;
while(i<qnu){
i++; //枚举约数个数
if(prime[nu]>n/sum)break; //可行性剪枝,注意直接prime[nu]*sum会爆long long
nt=(i+)*t,tot*=prime[nu]; //nt为新的约数个数,tot为新的数值
if(tot<=n)dfs(nu+,i,nt,tot); //继续递归搜索
}
}
/*nu为当前的素数下标,qnu为指数,t为当前约数个数,tot为当前的值*/
int main(){
cin>>n;
dfs(,,,); //2^30>=1e9
cout<<ans;
return ;
}
P1463 [HAOI2007]反素数的更多相关文章
- Luogu P1463 [HAOI2007]反素数ant:数学 + dfs【反素数】
题目链接:https://www.luogu.org/problemnew/show/P1463 题意: 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x ...
- 洛谷 P1463 [HAOI2007]反素数
https://www.luogu.org/problemnew/show/P1463 注意到答案就是要求1-n中约数最多的那个数(约数个数相同的取较小的) 根据约数个数的公式,在约数个数相同的情况下 ...
- BZOJ 1053: [HAOI2007]反素数ant dfs
1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...
- bzoj1053: [HAOI2007]反素数ant
51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...
- HAOI2007反素数
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1346 Solved: 732[Submit][Sta ...
- 【BZOJ】1053: [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Description: g(x)表示x的约数个数,反素数:对于任意的i (i < x),均有g(i) < g(x),则x为反素数:现在输入不 ...
- bzoj 1053: [HAOI2007]反素数ant 搜索
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1497 Solved: 821[Submit][Sta ...
- BZOJ 1053 [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1948 Solved: 1094[Submit][St ...
- 1053: [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3480 Solved: 2036[Submit][St ...
随机推荐
- 关于SIGSEGV错误及处理方法
http://blog.csdn.net/brace/article/details/1102422 今天编程遇到了SIGSEGV错误,比较困惑,所以找了些资料,总结一下: (1)官方说法是: SIG ...
- [OS] 可执行文件的装载
http://www.jianshu.com/p/e1300e7a4c48 1. 虚拟内存 在早期的计算机中,程序是直接运行在物理内存上的,程序在运行时访问的地址就是物理地址.可是,当计算机中同时运行 ...
- iOS 制作表格 (数据源控制行,列数)
记得去年面试的过程中,有一个面试官问我怎么制作表格.由于之前也没有做过,当时有点懵逼,今天想起来了,就用tableview制作了一个,望不要有人像我一样掉坑了, 直接上代码: // // ViewCo ...
- SummerVocation_Learning--java的String类方法总结
壹: public char charAt(int index),返回字符串中第index个字符. public int length(), 返回字符串长度. public int indexOf(S ...
- Java 批量文件压缩导出,并下载到本地
主要用的是org.apache.tools.zip.ZipOutputStream 这个zip流,这里以Execl为例子. 思路首先把zip流写入到http响应输出流中,再把excel的流写入zip ...
- django+xadmin在线教育平台(四)
3-2 配置表单页面 必要的该说的,该了解的 前置条件: 你已经学习了前面教程.将项目的文件夹目录结构,setting配置等修改完毕与我保持一致. 本节通过Django快速的配置一个留言板页面来学习 ...
- linux中搭建公网ftp服务器
Linux搭建ftp服务器汇总整理 一.检查linux中是否已经安装vsftpd服务端软件 rpm -qa |grep vsftpd 二.卸载linux中的vsftpd服务端软件 rpm -e vsf ...
- ubuntu crontab设置定时任务
ubuntu 设置定时任务 crontab -l #查看详情crontab -e #设置定时任务 * * * * * command 分 时 日 月 周 命令 第1列表示分钟1-59 每分钟用* ...
- uncompressing linux .................................................后没反应解决办法
编译kernel是的no machine record defined 错误,网上有一些解法,其实都是错误的,以讹传讹.不打算自己写,找到一篇还算靠谱的,转摘一下. 其根本原因是没有在 __proc_ ...
- psutil模块的基础使用
注:Python并没有自带psutil模块,需要自己去安装 安装psutil模块 pip install psutilorpip3 install psutil 一.导入模块 import psuti ...