[Heoi2014]平衡

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 348  Solved: 273
[Submit][Status][Discuss]

Description

下课了,露露、花花和萱萱在课桌上用正三棱柱教具和尺子摆起了一个“跷跷板”。
     这个“跷跷板”的结构是这样的:底部是一个侧面平行于地平面的正三棱柱教具,
上面 摆着一个尺子,尺子上摆着若干个相同的橡皮。尺子有 2n + 1 条等距的刻度线,
第 n + 1 条 刻度线恰好在尺子的中心,且与正三棱柱的不在课桌上的棱完全重合。
     露露发现这个“跷跷板”是不平衡的(尺子不平行于地平面)。于是,她又在尺
子上放 了几个橡皮,并移动了一些橡皮的位置,使得尺子的 2n + 1 条刻度线上都恰
有一块相同质 量的橡皮。“跷跷板”平衡了,露露感到很高兴。
     花花觉得这样太没有意思,于是从尺子上随意拿走了 k 个橡皮。令她惊讶的事
情发生了: 尺子依然保持着平衡!
     萱萱是一个善于思考的孩子,她当然不对尺子依然保持平衡感到吃惊,因为这
只是一个 偶然的事件罢了。令她感兴趣的是,花花有多少种拿走 k 个橡皮的方法
,使得尺子依然保 持平衡?
当然,为了简化问题,她不得不做一些牺牲——假设所有橡皮都是拥有相同质量的
 质点。但即使是这样,她也没能计算出这个数目。放学后,她把这个问题交给了她
的哥哥/ 姐姐——Hibarigasaki 学园学生会会长,也就是你。当然,由于这个问题
的答案也许会过于 庞大,你只需要告诉她答案 mod p 的值。

Input

第一行,一个正整数,表示数据组数 T(萱萱向你询问的次数)。

  接下来 T 行,每行 3 个正整数 n, k, p。 

Output

共 T 行,每行一个正整数,代表你得出的对应问题的答案。

 

Sample Input

10
6 5 10000
4 1 10000
9 6 10000
4 6 10000
5 1 10000
8318 10 9973
9862 9 9973
8234 9 9973
9424 9 9973
9324 9 9973

Sample Output

73
1
920
8
1
4421
2565
0
446
2549

HINT

T <= 20,1 <= n <= 10000,1 <= k <= 10,2 <= p <= 10000,且 k <= 2n+1。

设f(i, j)表示把i分成j个不同的且<= n的整数的方案数。

考虑一般的整数划分数问题,f(i, j) = f(i-1, j-1) + f(i-j, j),其中第一项表示新填一个1,第二项表示把所有数都加1。

顺着这个思路,我们先考虑“不同”这个限制。

显然我们不能直接新填一个1,所以我们考虑把所有数加1,搞出来一个1,第一项得出为f(i-j, j-1)

第二项同样为f(i-j, j).

所以状态转移方程为f(i, j) = f(i-j, j) + f(i-j, j-1).

再考虑不能超过n这个限制,如果有超过n的数,显然它只有一个,而且是n+1,所以我们把这些情况减掉,即f(i-n-1, j-1).

统计答案时,考虑选了0和不选0,两种情况,并特判k=1.

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 101001
#define M 15
using namespace std;
int n,m,p,w;
int f[N][M]; // f[i][j] 表示
//将i划分成j个互不相同的正整数,
// 且最大不超过n 的划分方案数
int main()
{
int i,j,k,g;
f[][]=;
for(scanf("%d",&g);g--;)
{
scanf("%d%d%d",&n,&m,&p);
if(m==)
{
puts("");
continue;
}
w=n*(m-);
for(i=;i<=w;i++)
for(j=;j<m;j++)
{
f[i][j]=(i>=j?(f[i-j][j]+f[i-j][j-]):);
f[i][j]=(i>=n+)?(f[i][j]-f[i-n-][j-]):f[i][j];
f[i][j]=(f[i][j]%p+p)%p;
}
long long ans=;
for(i=;i<=w;i++)
for(j=;j<m;j++)
ans+=f[i][j]*f[i][m-j],ans%=p;
for(i=;i<=w;i++)
for(j=;j<m-;j++)
ans+=f[i][j]*f[i][m--j],ans%=p;
printf("%lld\n",ans);
}
}

BZOJ3612 [Heoi2014]平衡 整数划分的更多相关文章

  1. bzoj3612 [Heoi2014]平衡——整数划分

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3612 看了好久才弄清楚题意... 原来整数划分就是这样的啊:https://blog.csd ...

  2. bzoj 3612 [Heoi2014]平衡——整数划分(dp)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3612 因为力矩的缘故,变成了整数划分. 学习到了整数划分.就是那个图一样的套路.https: ...

  3. [HEOI2014]平衡(整数划分数)

    下课了,露露.花花和萱萱在课桌上用正三棱柱教具和尺子摆起了一个“跷跷板”. 这个“跷跷板”的结构是这样的:底部是一个侧面平行于地平面的正三棱柱教具,上面 摆着一个尺子,尺子上摆着若干个相同的橡皮.尺子 ...

  4. 【递推】Bzoj3612[Heoi2014]平衡

    Description 下课了,露露.花花和萱萱在课桌上用正三棱柱教具和尺子摆起了一个“跷跷板”.      这个“跷跷板”的结构是这样的:底部是一个侧面平行于地平面的正三棱柱教具, 上面 摆着一个尺 ...

  5. bzoj3612: [Heoi2014]平衡

    首先不可重的整数规划是fi,j=fi-1,j-i+fi,j-i的 然后现在加了一个限制,分成的数不能超过n,那么对于拼大于n的数的时候多减一个fi-1,j-n-1 接下来是优化代码暴露我自带巨大常数的 ...

  6. bzoj 3612: [Heoi2014]平衡【整数划分dp】

    其实就是-n~n中求选k个不同的数,和为0的方案数 学到了新姿势叫整数划分,具体实现是dp 详见:https://blog.csdn.net/Vmurder/article/details/42551 ...

  7. BZOJ 3612: [Heoi2014]平衡( dp )

    枚举Fl, 就变成一个整数划分的问题了...f(i,j) = f(i-j,j-1)+f(i-j,j)-f(i-N-1,j-1)递推.f(i,j)表示数i由j个不同的数组成,且最大不超过N的方案数 -- ...

  8. [HEOI2014]平衡

    [HEOI2014]平衡 转化为求选择k个数,和为(n+1)*k的方案数 保证,每个数[1,2*n+1]且最多选择一次. 限制k个很小,所以用整数划分的第二种方法 f[i][j],用了i个,和为j 整 ...

  9. P4104 [HEOI2014]平衡

    友情提醒:取模太多真的会TLE!!! P4104 [HEOI2014]平衡 题解 本题属于 DP-整数划分 类问题中的 把整数 n 划分成 k 个不相同不大于 m 的正整数问题 设置DP状态  f[ ...

随机推荐

  1. BundleConfig的作用

    在ASP.NET MVC4中(在WebForm中应该也有),有一个叫做Bundle的东西,它用来将js和css进行压缩(多个文件可以打包成一个文件),并且可以区分调试和非调试,在调试时不进行压缩,以原 ...

  2. react的redux无状态组件

    Provider功能主要为以下两点: 在原应用组件上包裹一层,使原来整个应用成为Provider的子组件 接收Redux的store作为props,通过context对象传递给子孙组件上的connec ...

  3. grep与正则表达式使用

    grep简介 grep 是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹配的行打印出来.通常grep有三种版本grep.egrep(等同于grep -E)和fgrep.egrep为扩展的g ...

  4. 关于js中onclick字符串传参问题(html="")

    规则: 外变是“”,里面就是‘’外边是‘’,里边就是“”   示例: var a="111"; var html="<a onclick='selecthoods( ...

  5. CountDownLatch、CyclicBarrier、Semaphore的区别

    在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDownLatch,CyclicBarrier和Semaphore,今天我们就学习一下这三个辅助类的用法. 以下是 ...

  6. EasyUI与Bootstrap完美结合

    注意点:版本问题.两者都是基于jQuery来构建,所以对于版本的选择要注意下

  7. Centos7和Centos6防火墙开放端口配置方法(避坑教学)

    ▲这篇文章主要为大家详细介绍了Centos7防火墙开放端口的快速方法,感兴趣的小伙伴们可以参考一下! 一.CentOS 7快速开放端口: CentOS升级到7之后,发现无法使用iptables控制Li ...

  8. 1026: [SCOI2009]windy数(数位dp)

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9016  Solved: 4085[Submit][Sta ...

  9. proget Android代码混淆

    混淆的时候,还要添加Android.jar,不然,你的程序一篇空白.我就吃了亏. 还有,activity是不能混淆的,因为AndroidMeaxinfast.xml里面会找他.

  10. android基础知识杂记

    Activity中获取视图组件对象:public View findViewById(@IdRes int id) 该方法以组件的资源ID为参数,返回一个视图对象View,需要强转成具体的视图类对象. ...