[Heoi2014]平衡

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 348  Solved: 273
[Submit][Status][Discuss]

Description

下课了,露露、花花和萱萱在课桌上用正三棱柱教具和尺子摆起了一个“跷跷板”。
     这个“跷跷板”的结构是这样的:底部是一个侧面平行于地平面的正三棱柱教具,
上面 摆着一个尺子,尺子上摆着若干个相同的橡皮。尺子有 2n + 1 条等距的刻度线,
第 n + 1 条 刻度线恰好在尺子的中心,且与正三棱柱的不在课桌上的棱完全重合。
     露露发现这个“跷跷板”是不平衡的(尺子不平行于地平面)。于是,她又在尺
子上放 了几个橡皮,并移动了一些橡皮的位置,使得尺子的 2n + 1 条刻度线上都恰
有一块相同质 量的橡皮。“跷跷板”平衡了,露露感到很高兴。
     花花觉得这样太没有意思,于是从尺子上随意拿走了 k 个橡皮。令她惊讶的事
情发生了: 尺子依然保持着平衡!
     萱萱是一个善于思考的孩子,她当然不对尺子依然保持平衡感到吃惊,因为这
只是一个 偶然的事件罢了。令她感兴趣的是,花花有多少种拿走 k 个橡皮的方法
,使得尺子依然保 持平衡?
当然,为了简化问题,她不得不做一些牺牲——假设所有橡皮都是拥有相同质量的
 质点。但即使是这样,她也没能计算出这个数目。放学后,她把这个问题交给了她
的哥哥/ 姐姐——Hibarigasaki 学园学生会会长,也就是你。当然,由于这个问题
的答案也许会过于 庞大,你只需要告诉她答案 mod p 的值。

Input

第一行,一个正整数,表示数据组数 T(萱萱向你询问的次数)。

  接下来 T 行,每行 3 个正整数 n, k, p。 

Output

共 T 行,每行一个正整数,代表你得出的对应问题的答案。

 

Sample Input

10
6 5 10000
4 1 10000
9 6 10000
4 6 10000
5 1 10000
8318 10 9973
9862 9 9973
8234 9 9973
9424 9 9973
9324 9 9973

Sample Output

73
1
920
8
1
4421
2565
0
446
2549

HINT

T <= 20,1 <= n <= 10000,1 <= k <= 10,2 <= p <= 10000,且 k <= 2n+1。

设f(i, j)表示把i分成j个不同的且<= n的整数的方案数。

考虑一般的整数划分数问题,f(i, j) = f(i-1, j-1) + f(i-j, j),其中第一项表示新填一个1,第二项表示把所有数都加1。

顺着这个思路,我们先考虑“不同”这个限制。

显然我们不能直接新填一个1,所以我们考虑把所有数加1,搞出来一个1,第一项得出为f(i-j, j-1)

第二项同样为f(i-j, j).

所以状态转移方程为f(i, j) = f(i-j, j) + f(i-j, j-1).

再考虑不能超过n这个限制,如果有超过n的数,显然它只有一个,而且是n+1,所以我们把这些情况减掉,即f(i-n-1, j-1).

统计答案时,考虑选了0和不选0,两种情况,并特判k=1.

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 101001
#define M 15
using namespace std;
int n,m,p,w;
int f[N][M]; // f[i][j] 表示
//将i划分成j个互不相同的正整数,
// 且最大不超过n 的划分方案数
int main()
{
int i,j,k,g;
f[][]=;
for(scanf("%d",&g);g--;)
{
scanf("%d%d%d",&n,&m,&p);
if(m==)
{
puts("");
continue;
}
w=n*(m-);
for(i=;i<=w;i++)
for(j=;j<m;j++)
{
f[i][j]=(i>=j?(f[i-j][j]+f[i-j][j-]):);
f[i][j]=(i>=n+)?(f[i][j]-f[i-n-][j-]):f[i][j];
f[i][j]=(f[i][j]%p+p)%p;
}
long long ans=;
for(i=;i<=w;i++)
for(j=;j<m;j++)
ans+=f[i][j]*f[i][m-j],ans%=p;
for(i=;i<=w;i++)
for(j=;j<m-;j++)
ans+=f[i][j]*f[i][m--j],ans%=p;
printf("%lld\n",ans);
}
}

BZOJ3612 [Heoi2014]平衡 整数划分的更多相关文章

  1. bzoj3612 [Heoi2014]平衡——整数划分

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3612 看了好久才弄清楚题意... 原来整数划分就是这样的啊:https://blog.csd ...

  2. bzoj 3612 [Heoi2014]平衡——整数划分(dp)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3612 因为力矩的缘故,变成了整数划分. 学习到了整数划分.就是那个图一样的套路.https: ...

  3. [HEOI2014]平衡(整数划分数)

    下课了,露露.花花和萱萱在课桌上用正三棱柱教具和尺子摆起了一个“跷跷板”. 这个“跷跷板”的结构是这样的:底部是一个侧面平行于地平面的正三棱柱教具,上面 摆着一个尺子,尺子上摆着若干个相同的橡皮.尺子 ...

  4. 【递推】Bzoj3612[Heoi2014]平衡

    Description 下课了,露露.花花和萱萱在课桌上用正三棱柱教具和尺子摆起了一个“跷跷板”.      这个“跷跷板”的结构是这样的:底部是一个侧面平行于地平面的正三棱柱教具, 上面 摆着一个尺 ...

  5. bzoj3612: [Heoi2014]平衡

    首先不可重的整数规划是fi,j=fi-1,j-i+fi,j-i的 然后现在加了一个限制,分成的数不能超过n,那么对于拼大于n的数的时候多减一个fi-1,j-n-1 接下来是优化代码暴露我自带巨大常数的 ...

  6. bzoj 3612: [Heoi2014]平衡【整数划分dp】

    其实就是-n~n中求选k个不同的数,和为0的方案数 学到了新姿势叫整数划分,具体实现是dp 详见:https://blog.csdn.net/Vmurder/article/details/42551 ...

  7. BZOJ 3612: [Heoi2014]平衡( dp )

    枚举Fl, 就变成一个整数划分的问题了...f(i,j) = f(i-j,j-1)+f(i-j,j)-f(i-N-1,j-1)递推.f(i,j)表示数i由j个不同的数组成,且最大不超过N的方案数 -- ...

  8. [HEOI2014]平衡

    [HEOI2014]平衡 转化为求选择k个数,和为(n+1)*k的方案数 保证,每个数[1,2*n+1]且最多选择一次. 限制k个很小,所以用整数划分的第二种方法 f[i][j],用了i个,和为j 整 ...

  9. P4104 [HEOI2014]平衡

    友情提醒:取模太多真的会TLE!!! P4104 [HEOI2014]平衡 题解 本题属于 DP-整数划分 类问题中的 把整数 n 划分成 k 个不相同不大于 m 的正整数问题 设置DP状态  f[ ...

随机推荐

  1. C#的接口基础教程之四 访问接口

    对接口成员的访问 对接口方法的调用和采用索引指示器访问的规则与类中的情况也是相同的.如果底层成员的命名与继承而来的高层成员一致,那么底层成员将覆盖同名的高层成员.但由于接口支持多继承,在多继承中,如果 ...

  2. runtime消息转发机制

    Objective-C 扩展了 C 语言,并加入了面向对象特性和 Smalltalk 式的消息传递机制.而这个扩展的核心是一个用 C 和 编译语言 写的 Runtime 库.它是 Objective- ...

  3. 第31题:LeetCode946. Validate Stack Sequences验证栈的序列

    题目 给定 pushed 和 popped 两个序列,只有当它们可能是在最初空栈上进行的推入 push 和弹出 pop 操作序列的结果时,返回 true:否则,返回 false . 示例 1: 输入: ...

  4. SunmmerVocation_Learning--Java数组的创建

    一维数组声明方式: type var[] 或 type[] var; 如int a[], int[] a; Java中声明数组不能指定其长度,如int a[5]是非法的. 一维数组对象的创建: Jav ...

  5. 数据库sql语句的exists和in的区别

    性能变化的关键: #1 执行的先后顺序 谁是驱动表,谁先执行查询,谁后执行查询 #2 执行过程 exists的优点是:只要存在就返回了,这样的话很有可能不需要扫描整个表.   in需要扫描完整个表,并 ...

  6. Yii 2.x html 代码压缩

    <?php namespace Pangu\web; use yii\base\Component; /** * html格式响应内容格式化 * @author zhouzhian * */ c ...

  7. vncserver 启动停止方式

    vnc启停方式:vncserver :1  ; vncserver -kill :1

  8. SpringMVC controller接收的中文参数乱码

    CharacterEncodingFilter只对POST请求有用,GET请求的需要对你运行的tomcat 目录conf/server.xml文件中<Connector connectionTi ...

  9. P3402 最长公共子序列(nlogn)

    P3402 最长公共子序列 题目背景 DJL为了避免成为一只咸鱼,来找Johann学习怎么求最长公共子序列. 题目描述 经过长时间的摸索和练习,DJL终于学会了怎么求LCS.Johann感觉DJL孺子 ...

  10. exkmp略解

    推导 ext[i]表示母串s[i..lens]和子串t[1..lent]的最长公共前缀. nxt[i]表示t[i..lent]和t[1..lent]的最长公共前缀. 假设ext[1..k]已经算好,现 ...